原常州灵塑化工有限公司地块 土壤污染状况调查报告

委托单位: 常州灵塑科技发展有限公司

编制单位: 江苏蓝智生态环保科技有限公司

2021年12月

мафф ресурцияму умена областа. ---

ф<u>р</u>ар изгология **т**у

manda i na kata na kat

al a male de

4.0		e F	10.7
44084	9.25	1.07	B. ide
	9.18	er a al a	V
444411	M87	marks.	945
PARASI	20.0	4488	海南

44.4

44 64	2001	1.4
196 h		Birth:

DA STRANSPORTATION

The introduction of the control of t

والمرابع والمستعدد والمرابع والمستعدد

目录

插	育要	1
1	项目概述	1
	1.1 项目概况	1
	1.2 调查范围	2
	1.3 调查依据	3
	1.4 调查工作程序	6
2	地块概况	9
	2.1 地块环境状况	9
	2.2 地块周边敏感目标	16
	2.3 地块使用历史和现状	20
	2.4 相邻地块的使用历史和现状	27
	2.5 地块建设规划	28
	2.6 地块地质调查结果	29
3	第一阶段土壤污染状况调查	33
	3.1 资料收集与分析	33
	3.2 现场踏勘	35
	3.3 人员访谈	40
	3.4 地块内企业原生产情况	41
	3.5 周边相邻企业对本地块影响识别	52
	3.6 地块污染源排查	52
	3.7 第一阶段土壤污染状况调查总结	54
4	第二阶段土壤污染状况调查	55
	4.1 工作计划	55
	4.2 现场采样和实验室分析	65
	4.3 质量保证和质量控制	87
5	调查结果分析	96
	5.1 分析检测结果	96
	5.2 结果分析和评价	101
	5.3 不确定性分析	102

I

6	结论和建议	103
	6.1 结论	103
	6.2 建议	103
7	附件	104

摘要

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村, 企业成立于1987年,原名:武进县寨桥塑料化工助剂厂,于2002年 更名为:常州灵塑化工有限公司,占地面积约为2209m²,原主要从 事NCP预混剂生产。原常州灵塑化工有限公司地块东侧、北侧均为 居民区、农田;西侧为居民区;南侧为常州市武进寨桥塑料制品有限 公司、居民区、农田。

原常州灵塑化工有限公司地块用地性质为工业用地,因此本次调查参考《土壤环境质量建设用地土壤污染风险管控标准》第二类标准进行评价。

原常州灵塑化工有限公司于2017年12月30日关闭化工项目, 关停后原灵塑化工负责人至常州市武进区前黄镇寨桥工业集中区创办新厂:常州灵塑科技发展有限公司。

受常州灵塑科技发展有限公司委托, 江苏蓝智生态环保科技有限公司于 2021年11月开展土壤污染状况调查。调查共布设 4 个水土复合井 (6m), 1 个土壤对照点, 1 个地下水对照点。土壤、地下水、分析项目包括: pH 值、重金属 (7 项)、挥发性有机物 (27 项)、半挥发性有机物 (11 项)、石油烃 (C₁₀-C₄₀)、锌。

调查结果表明: (1) 本次调查地块内共布设4个水土复合井, 土壤样品中各检出数据均低于《建设用地土壤污染风险管控标准》第二类用地筛选值标准。

(2) 本次调查地块内共布设 4 个水土复合井, 地下水样品各检

出数据中,石油烃(C10-C40)检出浓度在《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的第二类用地筛选值标准范围内,其余各检出因子均低于《地下水质量标准》(GB/T 14848-2017)中IV类标准。

综上所述, 本地块能满足二类用地要求。

1 项目概述

1.1 项目概况

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村, 企业成立于 1987 年, 原名: 武进县寨桥塑料化工助剂厂, 于 2002 年 更名为: 常州灵塑化工有限公司, 占地面积约为 2209m², 原主要从 事 NCP 预混剂生产。2017 年 12 月 30 日原常州灵塑化工有限公司关 闭化工项目, 关停后原灵塑化工负责人至常州市武进区前黄镇寨桥工 业集中区创办新厂: 常州灵塑科技发展有限公司。原常州灵塑化工有 限公司自关停后各车间一直处于空置状态,于 2021 年 10 月出租给个 体户从事机加工、注塑、纸箱加工、减速机装配。

根据《中华人民共和国土壤污染防治法》、《常州市工业用地和经营性用地土壤环境保护管理办法》等国家、地方有关法规要求,为了解该地块内土壤和地下水环境质量,需委托专业单位对地块土壤环境进行调查,确认地块内土壤和地下水环境状况,通过本次调查判断土壤中污染物含量是否超过国家或地方有关建设用地土壤污染风险管控标准(筛选值),为接下来的工作提供依据。

受常州灵塑科技发展有限公司委托, 江苏蓝智生态环保科技有限公司开展了原常州灵塑化工有限公司地块土壤污染状况调查工作。接到任务后, 我公司组织专业技术人员进行了现场踏勘, 收集了地块内土壤污染状况调查评估相关的资料, 确定了地块内的土壤、地下水污染监测采样点位, 在此基础上编制了《原常州灵塑化工有限公司地块土壤污染状况调查方案》。

本次调查范围为原常州灵塑化工有限公司地块,调查面积约为2209m²。我公司依据调查方案完成地块土壤污染状况调查工作,并依据现场调查采样及数据分析情况,完成编制《原常州灵塑化工有限公司地块土壤污染状况调查报告》。

1.2 调查范围

本次土壤污染状况调查范围为原常州灵塑化工有限公司地块,调查面积约为2209m²。根据CGCS2000坐标,原常州灵塑化工有限公司地块拐点坐标见下表 1.2-1;地块影像图见下图 1.2-1。

表 1.2-1 原常州灵塑化工有限公司地块拐点坐标

拐点序号	拐点坐标(CGCS2000 坐标)(单位: m)				
初思力力	X	Y			
拐点1	3495229.541	487549.278			
拐点2	3495212.801	487543.062			
拐点3	3495198.154	487534.262			
拐点4	3495221.356	487470.934			
拐点 5	3495249.727	487474.688			
拐点 6	3495245.050	487501.029			
拐点7	3495240.126	487513.152			
拐点8	3495241.357	487513.645			
拐点9	3495230.649	487540.600			
拐点 10	3495232.433	487541.524			

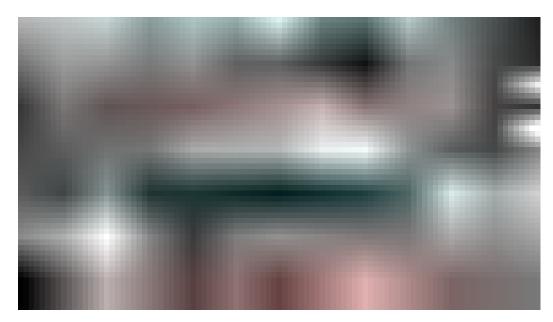


图 1.2-1 原常州灵塑化工有限公司地块拐点坐标图

1.3 调查依据

1.3.1 国家有关法律、法规及规范性文件

1.3.1.1 国家有关法律、法规及规范性文件

- (1)《中华人民共和国环境保护法》,2015年1月1日公布并施行;
- (2)《中华人民共和国水污染防治法》,2017年6月27日修订通过,2018年1月1日起施行;
- (3)《中华人民共和国土壤污染防治法》,国家环境保护部, 2019年1月1日实施:
- (4)《中华人民共和国水法》,2016年7月2日修订通过,2016年10月1日起施行;
- (5) 《中华人民共和国大气污染防治法》, 2018年10月26日 修订通过, 2018年10月26日起施行;
 - (6)《中华人民共和国固体废物污染环境防治法》,中华人民

共和国第十三届全国人民代表大会常务委员会第十七次会议修订通过, 自 2020 年 9 月 1 日起施行;

- (7)《国务院关于印发土壤污染防治行动计划的通知》(国发 [2016]31 号), 2016 年 5 月 28 日;
- (8)《污染地块土壤环境管理办法》(试行), 国家环境保护部, 2016年12月31日公布, 2017年7月1日施行;
- (9)《工矿用地土壤环境管理办法(试行)》(生态环境部令,部令第3号),2018年5月3日公布,自2018年8月1日起施行。

1.3.1.2 地方有关法规、规章及规范性文件

- (1)《江苏省固体废弃物污染环境防治条例》(公告第29号), 江苏省人大常委会,自2018年5月1日起施行;
- (2)《省政府关于印发江苏省土壤污染防治工作方案的通知》 (苏政发〔2016〕169号),2016年12月27日;
- (3)《省生态环境厅关于进一步加强重点行业企业遗留地块土壤污染防治工作的通知》(苏环办[2020]53号),2020年2月18日;
- (4)《市政府关于印发常州市工业用地和经营性用地土壤环境保护管理办法(试行)的通知》(常政规〔2016〕4号),2016年8月11日:
- (5)《市政府关于印发常州市土壤污染防治工作方案》(常政发〔2017〕56号),2017年5月9日;
- (6)《常州市地表水(环境)功能区划》(常政办发〔2003〕77号),2003年7月2日。

1.3.2 调查标准、技术规范

1.3.2.1 监测技术规范

- (1)《土壤环境监测技术规范》(HJ/T166-2004), 2004年12月9日发布, 2004年12月9日实施;
- (2) 《地下水环境监测技术规范》(HJ/T164-2020), 2021年3 月1日实施:
- (3)《水质样品的保存和管理技术规定》(HJ 493-2009), 2009 年9月27日发布, 2009年11月1日起施行;
- (4)《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019)。

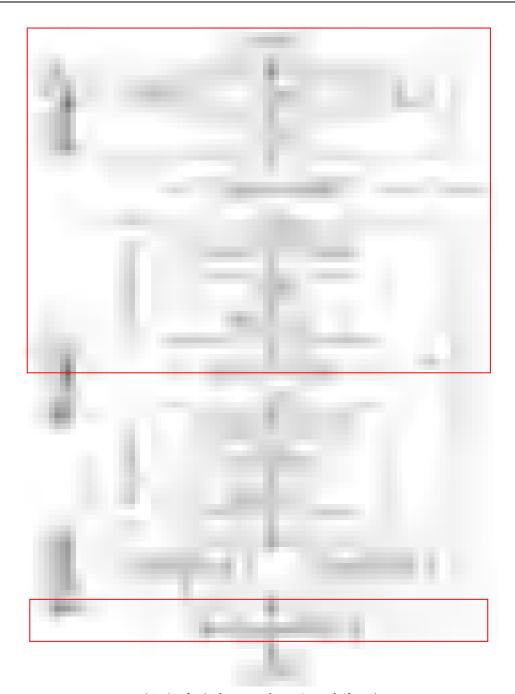
1.3.2.2 调查技术规范

- (1)《建设用地土壤污染状况调查技术导则》(HJ25.1-2019), 环境保护部,2019年12月5日发布,2019年12月5日实施;
- (2)《建设用地土壤污染风险管控和修复监测技术导则》 (HJ25.2-2019),环境保护部,2019年12月5日发布,2019年12月5 日实施:
- (3)《建设用地土壤污染风险管控和修复术语》(HJ682-2019), 生态环境部,2019年12月5日发布,2019年12月5日实施;
- (4)《地下水环境状况调查评价工作指南》,环境保护部,2019 年9月;
- (5)《工业企业场地环境调查评估与修复工作指南》(试行), 环境保护部,2014年11月30日;

(6)《建设用地土壤环境调查评估技术指南》,环境保护部办公厅,2017年12月15日印发,2018年1月1日起施行。

1.3.2.3 参考的评估标准

- (1) 土壤环境质量建设用地土壤污染风险管控标准》(试行) (GB36600-2018), 生态环境部, 2018年6月22日发布, 2018年8月1 日实施:
- (2)《深圳市建设用地土壤污染风险筛选值和管制值》 (DB4403/T-2020);
- (3) 《地下水质量标准》(GB/T14847-2017), 2017年10月14日发布, 2018年5月1日实施;
- (4)上海市生态环境局关于印发《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的通知,沪环土[2020]62号,2020年3月26日。


1.3.3 与项目有关的技术文件

- (1)《原常州灵塑化工有限公司地块土壤污染状况调查项目技术咨询合同》,常州灵塑科技发展有限公司,2021年11月。
- (2) 原常州灵塑化工有限公司有关环保手续、平面图等文件资料。

1.4 调查工作程序

根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019), 地块土壤污染状况调查分为三个阶段,本次调查工作按照阶段的划分, 主要包括第一阶段的全部工作以及第二阶段的前期初步采样分析工作,技术路线详见图1.4-1。

- (1)第一阶段调查通过资料收集与分析、现场踏勘和人员访谈等方式,尽可能完整的收集地块历史生产时期的资料,掌握地块现状。对资料加以分析核实,尽可能完整和准确的判断地块的潜在污染区域及污染物,进行不确定性分析,为下一步现场样品采集、测试分析工作提供依据。
- (2) 第二阶段调查根据第一阶段污染识别结果,并结合地块内 具体情况、水文地质条件及污染物迁移转化等因素,有针对性的制定 采样计划,采用专业采样设备采集样品,并委托具有资质的检测单位 进行样品检测。
- (3)调查结果分析编制土壤污染状况调查报告,依据相关标准对检测数据进行分析评估,为下一步是否需详细调查提供依据。 本次土壤和地下水污染状况调查的工作内容和程序见图 1.4-1。

(红框内为本项目涉及的工作步骤)

图 1.4-1 本次土壤污染状况调查的工作内容与程序

2 地块概况

2.1 地块环境状况

2.1.1 地理位置

常州市地处江苏南部,长江三角洲南缘,地理坐标北纬31°09′至32°04′,东经119°08′至120°12′,位于沪宁铁路中段,东距上海约160km,西离南京约140km,东邻无锡、江阴,西接茅山,南接天目山余脉,北临长江,与扬中、泰兴隔江相望,东南濒太湖,与宜兴相毗。

武进区位于长江三角洲太湖平原西北部,南临太湖 21.54km,西 衔漏湖 2.8km;东邻江阴市、无锡市,南接宜兴,西毗金坛市、丹阳 市,北接常州城区和新北区,外围有规划的联三高速公路和常泰高速 公路。联三高速公路是继沪宁高速公路之后长江沿线重要的经济走廊, 将有 1~2 个道口位于本区南部。常泰通道的建成将大大加强本区域与 苏北、浙北的联系。

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村。 地理位置图如下:

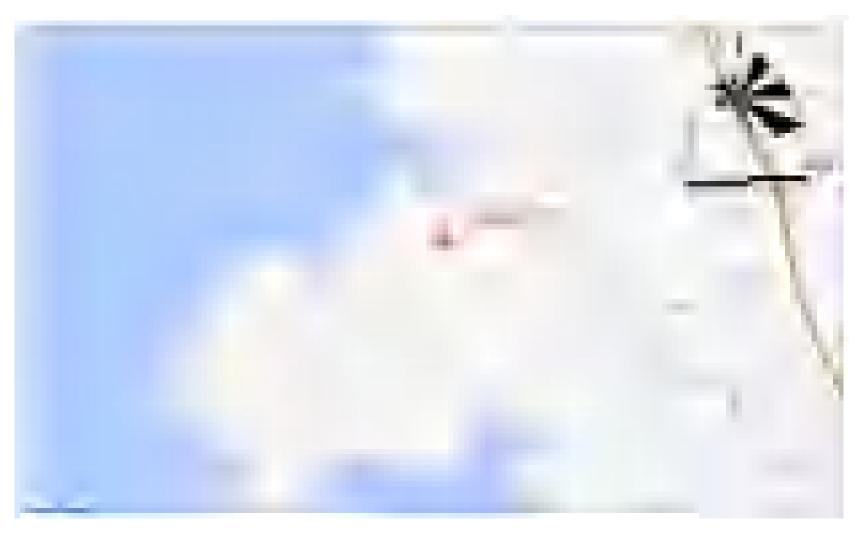


图 2.1-1 本地块地理位置图

2.1.2 地形、地貌

常州市属于长江三角洲太湖平原,地势平坦,平均海拔高程约为5m (黄海高程)。据区域地质资料,该地区地貌类型属于高沙平原,地质构造处于茅山褶皱带范围之内,出露地层为第IV纪冲积层,厚达190m,由粘土、淤泥和砾沙组成,地下水位一般在地下1~3m,深层地下水第一含水层水位约在地下30~50m,第二含水层约在地下70~100m。该地区的地震基本烈度为6度。

常州市地貌类型属高沙平原,山丘平圩兼有。市区属长江下游冲积平原,地势平坦,西北部较高,略向东南倾斜,地面标高一般在6~8米(吴淞基面)。项目地块地处长江中下游冲击平原,地质平坦,地质构造属于扬子古陆东端的下扬子白褶带,地势西北高,东南低。

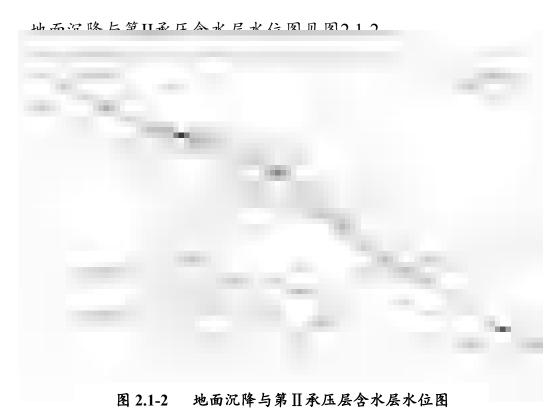
2.1.3 区域水文地质

常州市位于扬子准地台下扬子台褶带东端。印支运动使该地区褶皱上升成陆,燕山运动发生,使地壳进一步褶皱断裂,并伴之强烈的岩浆侵入和火山喷发。白垩纪晚世,渐趋宁静,该地区构造架基本定型。进入新生代,平原区缓慢升降,并时有短暂海侵。常州市地层隶属于江南地层区。依据第四系松散沉积物类型、分布特点和沉积物来源,全区大体以龙虎塘为界,划分长江新三角洲平原沉积区和太湖平原沉积区。

区域地下水主要赋存于第四系松散沉积砂层及基岩裂隙之中,区内第四系松散层厚度 180~200米,砂层一般厚度累计可达 50~160米,为地下水的赋存提供了良好的介质条件。按地下水形成的岩性和赋存条件以及水文特征,本区地下水类型可划分为松散岩类孔隙水和

基岩裂隙水,基岩裂隙水又可划分为灰岩岩溶裂隙水和砂岩裂隙水。 根据松散岩类各含水砂层的时代、沉积环境、埋藏分布、水化学特征 及彼此间水力联系,将区内200米以内含水砂层划分为五个含水层(组), 自上而下,依次划分为潜水含水层和 I、II、III、IV四个承压含水层 (组),其时代根据本区第四纪地层划分,分别相当于全新世,上更新世早期,中更新世早期,下更新世。区内各个松散含水层(组)的岩性 特征、厚度及富水性,均严格受到含水层形成沉积环境所制约,各自 反映出其特有的变化规律。

据资料记载,常州地区第二承压层近200年的地下水补给都为长江底部补水,开采地下水的补给时间可以追溯到南宋时期。


2.1.4 地面沉降和地裂缝

统计资料表明,七十年代地下水取水高峰期间,市区深井密度最高达22眼/平方公里,深层水的开采强度最大达5500立方米/(日平方公里)。近30年来,常武地区最大累计沉降量达1~1.1米,个别地区沉降量达1~5米,沉降与锡山、江阴等地区相连成为区域性地面沉降漏斗,累计地面沉降超过600毫米的地区达399平方公里。

2000年实行的地下水限采和禁采,有效地促进了常武地区地下水资源的采补平衡。超采区地下水漏斗区面积已从2000年的644平方公里压缩到300平方公里。据监测,2005年常州市区第 II 承压含水层季平均静水位已经回升到44.25米,与禁采前相比,平均回升9.22米。地面沉降速率明显趋缓,年沉降速率已由过去年最高120毫米下降到目前6毫米左右。

苏一锡一常地区地裂缝地质灾害的平面形态则呈线条状, 或直或

曲,或呈雁行式排列。大多在主裂缝两侧分布发育一定宽度的裂缝带,一般宽度小于100米,地裂缝延伸从数十米到千余米不等。苏一锡一常地区地裂缝地质灾害的剖面形态,一般不甚清晰,大多呈裂缝两侧上下错移,在地表形成陡坎状或阶步状地裂缝;亦有的呈"V"字形开裂状,地表裂缝宽度一般在2~80mm左右,裂缝可见深度一般均在20~40cm左右。根据三维地震勘探成果的分析,地裂缝的影响深度可达基岩面,影响深度达到60~80米。

2.1.5 地质环境

常州城市地质构造属于扬子古陆江南块褶带,经中生代地壳运动,属华南地台,由砂、闪光岩、花岗斑岩组成。基底由距今15.5~17.5亿年元古代轻变质岩系组成。地壳厚度36~37千米。地质构造特点表现为由泥盆系、石炭系、二迭系、三迭系地层组成的北东向褶皱构造,北东向、北西向断层构造。自晚朱罗纪至白垩纪的垂直升降运动,

形成西侧的常州凹陷和东侧的无锡凹陷。在常州凹陷边缘分布系列中, 新生代褶皱、断裂构造极为发育。常州市历史上属于少震区,地震等 级在5.5级以下, 地震设防力度为6度。

2.1.6 土壤植被

常州地表土壤大部分为新生代第四纪沉积,土壤类型复杂多样,低山丘陵区以黄棕壤等为主,肥力相对较差,平原圩区主要为冲积土和沉积土,肥力较好。金坛、溧阳山前平原区以冲洪积、冲湖积相互交替沉积为主,厚度由山前30~40米向东部的洮湖、滆湖地区增至80~100米。常武地区沉积厚度较大,由西往东为100~200米。沉积物山丘区以粘土、壤土、网状红土及雨花组砂砾石层构成,侵蚀切割厉害,属堆积侵蚀地形。平圩区土壤发育在太湖冲积物上,一般土层比较深厚肥沃,主要有粘土、壤土、砂壤土等,通透性好,肥力较高。

常州市森林植被主要分布在茅山、宜溧等低山丘陵,占汇流区土地总面积的10%;栽培植被占汇流区土地总面积的51.9%(其中作物植被46.8%,经济林、果园占2.5%,蔬菜面积占2.6%)其他覆盖占汇流区土地总面积的26.1%(其中公路面积占2.9%,城镇面积占3.7%,水面积占19.5%)。

区域森林植被包含以马尾松、黑松和杉木为建群树种的针叶林和以壳斗科树种为基本建群树种的阔叶林两大类,以栎类为主的常绿阔叶林,市内仅见于宜溧山区。区域栽培植被,农作物以稻、麦、油菜为主,其他还有山芋、豆类等;经济作物以棉花为主;经济林以茶叶、桑为主。

2.1.7 水系

常州地区的河流属长江水系太湖平原水网区, 北有长江, 南有太湖和滆湖, 京杭运河由西向东斜贯中央, 形成一个北引江水, 汇流运河, 南注两湖的自然水系。

(1) 长江

长江常州段上起丹阳市交界的新六圩,下迄与江阴市交界的老桃花港,沿江岸线全厂为 16.35km。其中: 孢子洲夹江(新六圩至德胜河口)长 8.25km,禄安洲夹江(德胜河口至老桃花港)长 4.18km,水面宽约 500m。

本江段属长江下游感潮河段,潮汐为非正规半日浅海潮,每天两次涨潮,两次落潮,平均潮周期为12小时26分,潮波已明显变形,落潮历时大大超过涨潮历时。据江阴肖山潮位站的不完全统计,平均涨潮历时约3小时41分,落潮平均历时约为8小时45分。通常认为长江以江阴为河口区潮流界,实际上潮流界是随着上游径流量和下游潮差等因素不断变动。因此本江段在部分时间(主要是平水期,枯水期)会发生双向流动;因长江径流是主要的动力因素,单向下泄还是主要的。

据长江潮区界以上大通水文站统计,最大洪峰流量 92600m³/s (1954年8月2日),最小枯季流量 4620m³/s (1979年1月31日)。 多年平均流量约 30000m³/s,丰、平、枯期平均流量分别为 68500m³/s、28750m³/s 和 7675m³/s。

(2) 京杭运河

京杭运河(常州段)起始新河口,终至横洛间,全长44.7公里,

西北-东南横贯全境。长江补给水自北由新孟河、德胜河流入运河,运河水部分径流向南由扁担河、白鹤河注入滆湖。运河流至河水厂附近分为南北两支,向北流入关河,约占上游来水的五分之一,其余五分之四仍由运河向下游输送,两者呈橄榄形包围城区,直至水门桥再相汇合。关河的北侧分关河水东流入北塘河,而运河南侧则有南运河、白荡河分运河水注入武宜运河。水门桥以下运河有采菱港、武进港、直湖港与太湖沟通。整个水系呈潮汐河流的特点,水流流向受太湖与运河的相对水位影响,并受水利工程的控制;通常流向是自西向东和自北向南,且落差不大,水流迟缓,有时会发生倒流。

2.2 地块周边敏感目标

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村, 根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)和《建 设用地土壤环境调查评估技术指南》要求,经现场实地踏勘,周边环 境敏感目标主要为居民区等。地块周边概况及环境敏感目标见下表 2.2-1、图 2.2-1。

环境 要素	环境保护 对象名称	方位	与地块边 界距离(m)	规模 (人)	环境 功能	保护级别	
空气 环境	灵台村	S	15	5200		《环境空气质量标	
	新屋村	N	18	50	居民区		
	蒋家村	W	70	120			
	后小村	SW	125	240		准》(GB3095-2012)	
	前小村	SW	250	200		二级标准	
	中村	SW	380	320			
	灵西村	SW	450	100			

表 2.2-1 地块周边主要环境敏感目标

原常州灵塑化工有限公司地块土壤污染状况调查报告

	沿沟村	SW	520	250		
	湖滨村	SW	620	400		
	天灯村	SW	375	420		
	殷家塘	W	370	300		
	大屋村	S	500	80		
	西沿村	SW	590	500		
	石街村	S	420	450		
	墙门村	S	400	100		
	西塘田村	SE	500	350		
	西上边	SE	510	280		
	联庆村	Е	530	800		
	孙家村	Е	140	50		
	高垛上	N	300	90		
 水环 境	灵台村 无名小河	S	200	/	地表水	《地表水环境质量标 准》(GB3838-2002) IV类标准

根据《省政府关于印发江苏省生态空间管控区域规划的通知》(苏政发[2020]1号),本地块不在江苏省生态空间管控区域范围内,周边最近的生态空间管控区域为北侧的滆湖重要渔业水域,距离约为750m。具体见图 2.2-2。

图 2.2-1 本地块周边概况图

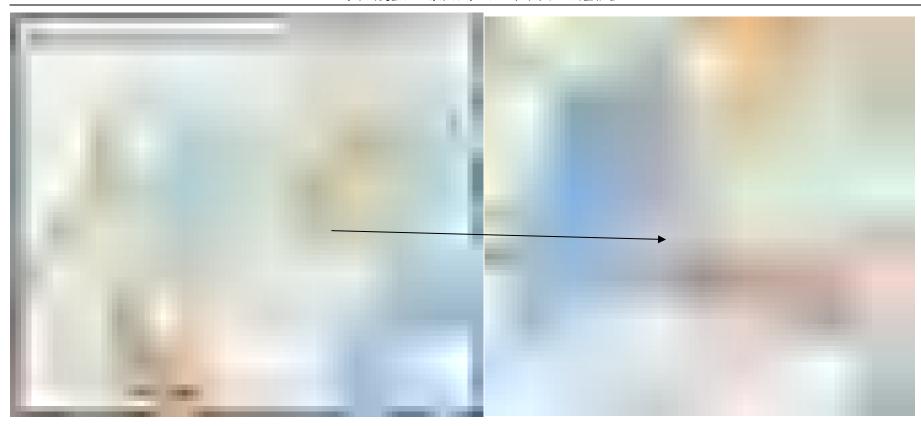


图 2.2-2 常州市生态红线区域分布图

2.3 地块使用历史和现状

2.3.1 地块使用历史情况

根据历史影像图和相关资料、现场踏勘结合访谈情况了解到:

- 1、1987年以前,本地块为农田。
- 2、1987年~1990年,原武进县寨桥塑料化工助剂厂在本地块内 从事玻璃钢抽油杆生产。
- 3、1990年~2002年,原武进县寨桥塑料化工助剂厂在本地块内 从事 NCP 预混剂生产。其中 1990~1991年,企业自己生产硬脂酸锌 作为预混剂的原料,之后由于自行生产硬脂酸锌成本较高,企业改为 直接外购硬脂酸锌。
- 4、2002年~2017年,原武进县寨桥塑料化工助剂厂更名为"常州灵塑化工有限公司",在本地块内仍从事NCP预混剂生产。期间于2008年进行过二氧化硅粉粹和塑料制品项目的试生产,但均未成功,实际未进行生产。
 - 5、2017年12月30日,原常州灵塑化工有限公司关闭化工项目。
 - 6、2018年~2021年10月,本地块各车间处于空置状态。
- 7、2021年10月~今,本地块内各车间出租给个体户从事机加工、 注塑、纸箱加工、减速机装配。

表 2.3-1 本地块利用历史

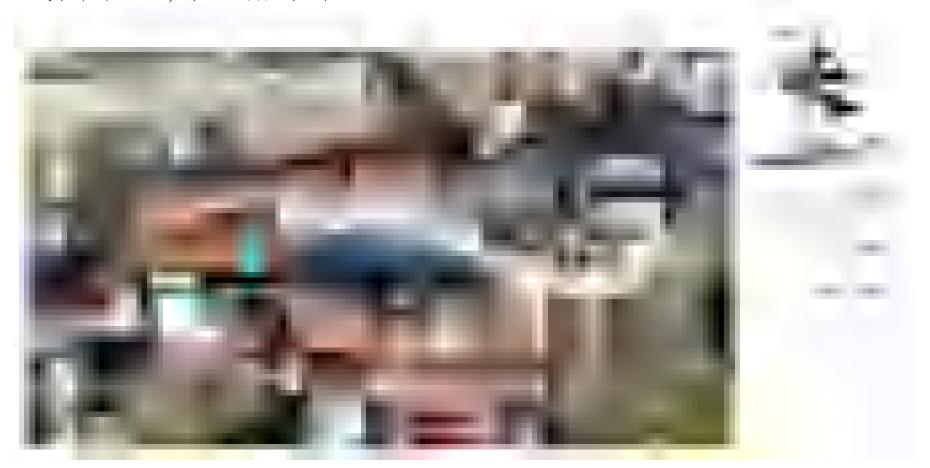
<u> </u>	A 11 /2 //a	14 At n1 (2)	月子佳切	h			
序号	企业名称	持续时间	生产情况	备注			
1987 年前为农田							
1		1987 年~1990 年	原武进县寨桥塑料化 工助剂厂在本地块内 从事玻璃钢抽油杆生 产	/	初步判断 可能对本 地块造成 污染		
2	原武进县 塞桥塑料 化工助剂	1990 年~2002 年	原武进县寨桥塑料化 工助剂厂在本地块内 从事 NCP 预混剂生产。 其中 1990~1991 年,企 业自己生产硬脂酸锌 作为预混剂的原料,定 后由于自行生产硬脂 酸锌成本较高,企业改 为直接外购硬脂酸锌。	有环境影响报 告表	初步判断 可能对本 地块造流		
3	原常州灵 塑化工有 限公司	2002 年~2017 年底	原武进县寨桥塑料化 工助剂厂更名为"常州 灵塑化工有限公司", 在本地块内仍从事 NCP 预混剂生产。2008 年进行过二氧化硅粉 粹和塑料制品项目的 试生产,但均未成功, 实际未进行生产。直关 闭化工项目。	有环境影响登 记表、自查评 估报告	初步判断 可能对本 地块造成 污染		
4		2018年~2021年 10月	本地块各车间处于空 置状态。	/	/		
5		2021年10月~今	本地块内各车间出租 给个体户从事机加工、 注塑、纸箱加工、减速 机装配。	/	/		

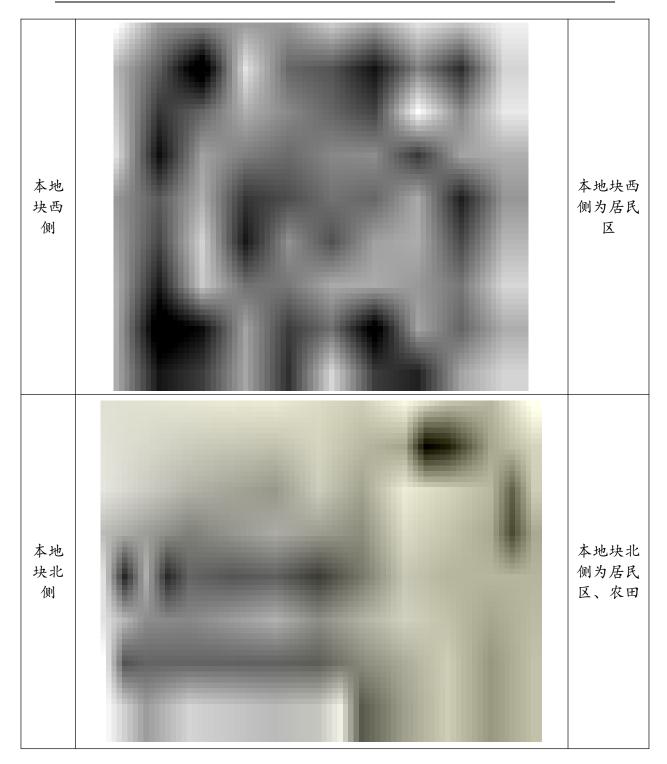
本地块各阶段历史影像图如下:

图 2.3-1 项目地块历史影像图

2.3.2 地块现状

我公司技术人员于2021年11月对本地块进行了现场踏勘,目前本地块构筑物布置情况与关停时基本一致,现场踏勘时本地块内各车间已空置,本地块航拍图如下:




图 2.3-2 本地块现状航拍图 (2021年11月)

2.4 相邻地块的使用历史和现状

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村, 地块东侧、北侧均为居民区、农田; 西侧为居民区; 南侧为常州市武 进寨桥塑料制品有限公司、居民区、农田。

本地块周边现场踏勘照片如下:

方向	现状照片	场地历史 及现状概 述
本块侧		本地块东 侧为居民 区、农田
本块侧		本侧市桥品司区地为武塑有、、南州寨制公民田

2.5 地块建设规划

原常州灵塑化工有限公司地块目前仍从事工业生产,因此本次调查参考《土壤环境质量建设用地土壤污染风险管控标准》第二类标准进行评价。

2.6 地块地质调查结果

2.6.1 土体工程地质层的划分和描述

本次调查项目引用《常州市武进寨桥电镀有限公司地块土壤污染 状况调查地块的场地土层简要调查》(江苏文博建筑设计有限公司编 制),引用地块位于本地块东侧 2.5km 处,同属前黄镇区域,距离较 近,地质情况相似,具有一定的参考价值。

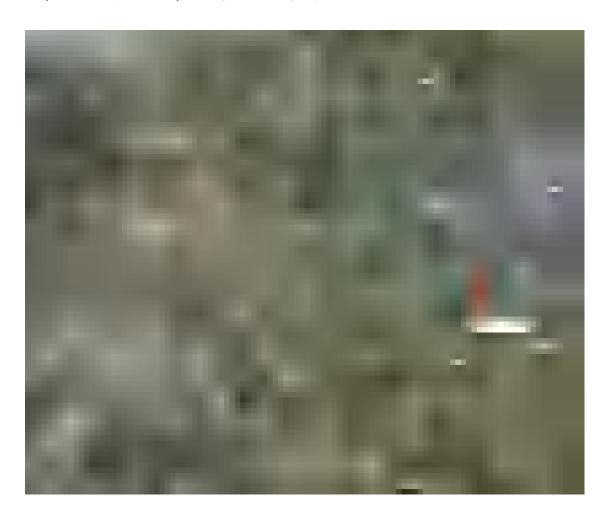


图 2.6-1 项目地块与地勘引用地块位置关系图

(1) 地基土构成及特征

经勘察资料查明, 拟建场地在勘探深度范围内的土层, 根据工程 特征、土层结构、分布特点等, 将土体自上而下共分为6个单元层, 根据各土层的土性特征, 自上而下分别描述为:

- ①杂填土:杂色,结构松散,以粘性土为主,土质不均匀。层厚为 0.88~1.40 米,平均厚度 1.10 米;层底标高 3.00~3.50 米。场地均有分布。
- ②粉质粘土: 黄灰色, 可塑, 稍有光泽, 摇震反应无, 干强度中等, 韧性中等。层厚 4.50~5.00 米, 平均厚度 4.90 米; 层底标高为 -1.44~-1.90 米。双桥静力触探 qc 平均值 1.69MPa, fs 平均值 91.9kPa, 属中压缩性土。场地均有分布。
- ③砂质粉土:灰黄色,湿,稍~中密,切面无光泽,韧性及干强度低,摇震反应迅速,具层理。层厚 1.20~1.60 米,平均厚度 1.30 米;层底标高为-2.70~-3.10 米,双桥静力触探 qc 平均值 3.70MPa,fs 平均值 82.3kPa,属中压缩性土。场地均有分布。
- ④粉质粘土夹砂质粉土:灰色,软塑,稍有光泽,摇震反应无,韧性及干强度中等。层厚 4.90~5.50 米,平均厚度 5.10 米;层底标高为-8.00~-8.30 米,双桥静力触探 qc 平均值 1.02MPa,fs 平均值 29.5kPa,属中压缩性土。场地均有分布。
- ⑤粉砂:灰黄色,饱和,中密,沙颗粒呈浑圆状、粒状,分选性好,颗粒大小均匀,主要矿物成分为石英、长石和少量云母。层厚5.70~6.10米,平均厚度5.90米;层底标高为-14.00~-14.30米,双桥静力触探 qc平均值6.54MPa,fs平均值85.8kPa,属中压缩性土。场地均有分布。
 - ⑥粉质粘土: 黄灰色, 可塑, 稍有光泽, 摇震反应无, 韧性及干

强度中等。层厚大于 1.50 米。双桥静力触探 q_c 平均值 2.88MPa, f_s 平均值 115.5kPa, 属中压缩性土。场地均有分布。该土层未揭穿。

各土层的厚度埋深及层底标高见下表:

粉质粘土

地层编号 地层名称 层底标高(m) 层厚(m) 杂填土 3.00~3.50 $0.88 \sim 1.40$ 1 粉质粘土 -1.44~-1.90 4.50~5.00 2 砂质粉土 $-2.70 \sim -3.10$ 3 1.20~1.60 粉质粘土夹砂质粉土 **4** -8.00~-8.30 4.90~5.50 (5) 粉砂 -14.00~-14.30 5.70~6.10

未揭穿

未揭穿, 大于1.50

表 2.6-1 地基土分层表

2.6.2 水文地质特征

6

根据《常州市武进寨桥电镀有限公司地块土壤污染状况调查地块的场地土层简要调查》(江苏文博建筑设计有限公司编制),本场地内地下水类型主要为上层滞水和浅层承压水。上层滞水主要赋存于拟建场地①杂填土层中,其主要补给源为大气降水和生活用水,以蒸发、越流方式排泄,水量较少;浅层承压水主要埋藏于拟建场地内③砂质粉土、⑤粉砂层中,水量丰富,以侧向补给为主,以越流方式排泄。

2.6.3 工程地质剖面图



图 2.6-2 工程地质剖面图

3 第一阶段土壤污染状况调查

3.1 资料收集与分析

本项目地块调查通过在常州市武进生态环境局调取档案资料; 查阅历史影像资料;走访本地块使用权人、镇环保科、村委工作 人员及周边居民等方式了解本项目地块历史情况。

在常州市武进生态环境局、前黄镇人民政府等查阅了本地块相关企业的环保手续,收集到了原常州灵塑化工有限公司环境影响报告表、环境影响登记表、自查评估报告等资料。

通过查阅历史影像资料,1897年起,本地块的平面布局即和 现状基本一致。

表 3.1-1 本地块调查资料收集情况

序号	资料信息	获取与否	资料来源			
1	地块利用变迁资料					
1.1	用来辨识地块及其邻近区域的开发 及活动状况的航片或卫星照片	√	Google earth 地图、实地勘察、实地航拍			
1.2	土地管理机构的土地登记资料	×	/			
1.3	地块的土地使用和规划资料	√	业主			
1.4	平面布置图	√	业主			
1.5	地块利用变迁过程中的地块内建 筑、设施、工艺流程和生产污染等 的变化情况	V	环保资料、人员访谈			
2	地块环境	竞资料				
2.1	地块内土壤及地下水污染记录	×	/			
2.2	地块内危险废弃物堆放记录	×	/			
2.3	地块与自然保护区和水源地保护区 的位置关系	V	网站查询			
3	地块相关生	上产情况				
3.1	产品、原辅材料和中间体清单、平面 布置图、工艺流程图	√	环境影响报告表、登记 表及自查评估报告			
3.2	地下管线图、化学品储存和使用清	/	/			

	单、泄漏记录、废物管理记录		
3.3	环境影响报告书或表	×	常州市武进区生态环境 局
3.4	地勘资料	√	引用周边地块地勘资料
4	由政府机关和权威机构所	保存和发布	的环境资料
4.1	区域环境保护规划	×	/
4.2	环境质量公告	√	政府网站
4.3	生态和水源保护区规划	√	网站
5	地块所在区域的自然	然和社会经	济信息
5.1	地理位置图、地形、地貌、土壤、水 文、 地质、气象资料,当地地方性 基本统计信息	V	网站
5.2	地块气象、水文资料	√	网站
5.2		√ √	网站及地图

3.2 现场踏勘

我公司技术人员于 2021 年 11 月对本地块进行了现场踏勘,现场踏勘时本地块内各车间出租给个体户从事机加工、注塑、纸箱加工、减速机装配。原常州灵塑化工有限公司生产设备均已拆除,现场未发现遗留的化学品、固废等。

 序号
 功能区名称
 现状照片
 历史用途及现状概述
 备注
 布点情况

 1
 原生产车间 1F 东侧
 原生产车间 1F 东侧
 正式域
 本设点位 LSMW-1

表 3.2-1 地块现场踏勘情况表

2	原生产车间 1F 西侧	原生产车间1F从事预混剂生产,原构筑物保留,现出租给个体户从事纸箱加工。	重点区域	布设点位 LSMW-2
3	原生产车间 2F 东侧	原生产车间 2F 主要为 抗静电剂加热工段, 现生产设备均已拆 除,车间空置。	重点区域	于 1F 布设 点位 LSMW-1

4	原生产车间 2F 西侧	原生产车间2F主要为 抗静电剂加热工段, 现生产设备均已拆 除,车间空置。	重点区域	于 1F 布设 点位 LSMW-2
5	原循环水池位置	原地面为车棚, 地下 设有一个循环水池, 现出租给个体户从事 塑料制品加工。	重点区域	布设点位 LSMW-3

6	原原辅材料 仓库	原原辅材料仓库构筑 物保留,现出租给个 体户从事减速机装 配。	重点区域	布设点位 LSMW-4
7	原锅炉房	原锅炉房构筑物保留,锅炉设备及排气筒均拆除,现由租赁方用作仓库使用,主要存放机油。	重点区域	原锅炉房 紧挨原车 侧, 故位 LSMW-1

8	原办公楼及 门卫		原办公楼及门卫构筑 物保留,目前处于空 置状态	一般区域	/
---	-------------	--	-------------------------------	------	---

3.3 人员访谈

本次调查时, 采取书面调查表的方式对本地块使用权人、镇环保 科、村委工作人员及周边居民进行了人员访谈(见附件),并对地块 内布局、历史使用情况等进行了询问, 为进一步排查土壤和地下水潜 在污染区域提供了支撑材料。通过人员访谈,了解到1987年前本地 块最早为农田。1987年~1990年,原武进县寨桥塑料化工助剂厂在本 地块内从事玻璃钢抽油杆生产。1990年~2002年,原武进县寨桥塑料 化工助剂厂在本地块内从事 NCP 预混剂生产。其中 1990~1991 年, 企业自己生产硬脂酸锌作为预混剂的原料,之后由于自行生产硬脂酸 锌成本较高,企业改为直接外购硬脂酸锌。2002年~2017年,原武进 县寨桥塑料化工助剂厂更名为"常州灵塑化工有限公司", 在本地块 内仍从事 NCP 预混剂生产。期间于 2008 年进行过二氧化硅粉粹和塑 料制品项目的试生产,但均未成功,实际未进行生产。2017年12月 30日,原常州灵塑化工有限公司关闭化工项目。2018年~2021年10 月, 本地块各车间处于空置状态。2021年10月~今, 本地块内各车 间出租给个体户从事机加工、注塑、纸箱加工、减速机装配。访谈对 象与访谈情况见表 3.3-1。

表 3.3-1 人员访谈情况汇总表

访谈日期	受访人员	所属单位	访谈情况
2021.11.12	蒋志光	原常州灵塑化工 有限公司负责人	受访人员为原企业负责人、地块所
2021.11.12	徐彩霞	灵台村居民	涉及的镇环保科、村委的工作人员、 周边居民,对地块的历史及企业情
2021.11.12	蒋国洪	灵台村村委	况均比较了解。通过对以上人员的 访谈,了解了地块内区域分布、历
2021.11.12	朱勤锋	前黄镇经发局 (环保科)	史沿革以及地块内企业生产情况

3.4 地块内企业原生产情况

3.4.1 原武进县寨桥塑料化工助剂厂生产概况

通过人员访谈了解到,1987年~1990年,原武进县寨桥塑料化工助剂厂在本地块内从事玻璃钢抽油杆生产,由于年代久远,无相关书面资料,根据人员访谈了解到,玻璃钢抽油杆项目使用到的原辅料主要为:玻璃纤维丝、玻璃钢树脂、固化剂,主要特征污染物为苯乙烯、过氧化苯甲酰等。

1990年~2002年,原武进县寨桥塑料化工助剂厂在本地块内从事 NCP 预混剂生产。其中 1990~1991年,企业自己生产硬脂酸锌作为 预混剂的原料,之后由于自行生产硬脂酸锌成本较高,且产品质量不 达标,企业改为直接外购硬脂酸锌,主要特征污染物为氧化锌。

在土壤污染状况调查前期收集资料时,我公司从企业、生态环境 局档案室收集了相关资料,结合了相关人员访谈情况,整理了企业大 致生产情况如下:

1、相关环保手续履行情况

原武进县寨桥塑料化工助剂厂于 1994 年 5 月申报了"工业 NCP 预混剂项目环境影响报告表"并取得了武进县环境保护局的审批意见。

	企业 名称	3	"三同时"验收			
序号		项目名称	审批通过时 间	批准机构	验收通 过时间	验收 单位
1	原 基 報 批 形 工 厂	工业 NCP 预混 剂项目	1994.5.23	武进县环 境保护局	/	/

表 3.4-1 企业环保手续履行情况

2、产品方案及生产情况

根据相关资料,结合相关人员访谈情况,原武进县寨桥塑料化工助剂厂产品情况如下:

序号	企业 名称	项目名称	产品名称	设计 能力 (t/a)	实际 产量 (t/a)	备注
1	原进寨沟	/	玻璃钢抽油杆	无环评资 料	1000 根 /a	1987~1990 年 生产
2	塑料 化工 助剂 厂	工业 NCP 预 混剂项目	工业 NCP 预 混剂	10	10	/

表 3.4-2 产品方案表

3、主要原辅材料使用

根据相关环保资料,结合相关人员访谈情况,原武进县寨桥塑料 化工助剂厂际生产项目涉及的原辅料使用情况如下:

		•	•				
企业 名称	产品名称	名称	组分、 规格	环评中 年耗量 (t/a)	实际年耗量 (t/a)		备注
		玻璃纤 维丝	/	/	3:	2	
	玻璃钢抽油杆	玻璃钢 树脂	/	/	7.	5	1987~1990 年 生产
原武进		固化剂	过氧化 苯甲酰	/	0.	5	
县寨桥		氯乙醇	/	1.6	抗静	抗静 电剂 6.2	去拉贴可让
塑料化		十八胺	/	1.6			直接购买抗 静电剂成品
工助剂		纯碱	/	3.0	2 /11		好七州戏品
Γ	工业 NCP 预 混剂	硬脂酸	/	3.0	3.	0	仅 1990~1991 年,企业自己 生产硬脂酸 锌作为预混
		氧化锌	/	0.8	0.	8	剂的原料,之 后改为直接

表 3.4-3 主要原辅材料一览表

					外购硬脂酸
					锌。
	偶联剂	/	0.02	0.02	/
	白炭黑	/	0.04	0.04	/
	煤	/	6	6	/
	自来水	/	2	2	/

4、生产设备

根据相关环保资料,结合相关人员访谈情况,原武进县寨桥塑料 化工助剂厂涉及的生产设备如下:

项目	设备名称	规格型号	数量(台/套)
rb rà 知儿 "上丁	挤出机	/	1
玻璃钢抽油杆	不锈钢槽	/	1
	反应釜	/	2
T # MOD 75	混合机	/	2
工业 NCP 预 理刻	喷雾造粒干燥机	/	1
混剂	真空泵	/	2
	计量包装机	/	1

表 3.4-4 生产设备一览表

5、生产工艺情况

根据相关资料,结合相关人员访谈情况,原武进县寨桥塑料化工助剂厂涉及的生产工艺情况如下:

(1) 玻璃钢抽油杆

图 3.4-1 玻璃钢抽油杆生产工艺流程图

工艺流程简述:

缠绕:利用将玻璃纤维丝缠绕于定制的架子上方形成玻璃纤维纱。

配料搅拌:将玻璃钢树脂、固化剂按照约产品所需比例投放到不锈钢槽中进行常温混合搅拌,拌制成混合浆液。配料搅拌过程中有有机废气产生。

浸浆:将玻璃纤维纱浸没于浸浆槽中匀速转动,使玻璃纤维纱表面与配置好的浆液充分接触。

挤出成型:浸浆后将玻璃纤维纱投入挤出机中,挤出成型后即为成品。

锅炉使用煤作为燃料,产生燃烧废气,浸浆及后续挤出成型过程中有有机废气产生。

(2) 工业 NCP 预混剂生产工艺

图 3.4-2 工业 NCP 预混剂生产工艺流程图

工艺流程简述:

抗静电剂经加热至90℃左右熔化后,通过泵加入到反应釜中,

与硬脂酸锌一起充分搅拌,温度110-120℃,搅拌5小时,之后加入偶联剂和白炭黑,再搅拌3小时,之后在反应釜内静置自然冷却,由管道输送到喷雾干燥塔中,通过喷射将液态物料瞬时转变成粉末状物料,该过程在密闭的塔中进行,无粉尘产生。最后经检验合格后即可包装入库。

锅炉使用煤燃料,产生燃烧废气,搅拌前投料过程会产生粉尘,加热搅拌过程中产生有机废气。

6、产排污情况

(1) 废水

玻璃钢抽油杆项目、预混剂项目无生产废水产生,蒸汽冷凝水作为清下水排放:职工生活污水经化粪池收集后用作农肥。

(2) 废气

玻璃钢抽油杆项目、预混剂项目相应产生的废气均在车间内无组织排放。

企业使用燃煤锅炉,燃煤废气主要污染因子为二氧化硫、氮氧化物、烟尘(可能含有苯并[a]芘、砷等)。

(3) 噪声

预混剂项目主要噪声源为反应釜,玻璃钢抽油杆项目主要噪声源为挤出机,两者均为低噪声设备,对外界声环境影响较小。

(4) 固废

企业无危废产生,各项目产生的空包装袋和空包装桶在厂内重复 利用,不作为危废管理。生活垃圾由环卫处理。

3.4.2 原常州灵塑化工有限公司生产概况

2002年~2017年,原武进县寨桥塑料化工助剂厂更名为"常州灵塑化工有限公司",在本地块内仍从事 NCP 预混剂生产。

期间,于2008年申报了"硬脂酸锌粉、二氧化硅粉碎加工,塑料制品项目环境影响登记表",通过人员访谈了解到,硬脂酸锌粉实际未进行生产,企业仅短暂从事过二氧化硅粉碎加工,主要生产工艺为将外购的二氧化硅颗粒粉碎成粉状,后由于粉碎后达不到产品要求,故不再生产;塑料制品项目由于注塑机调试失败,未进行生产,故该阶段不涉及主要的土壤特征污染因子。

2017年12月30日,原常州灵塑化工有限公司关闭化工项目。2018年~2021年10月,本地块各车间处于空置状态。

在土壤污染状况调查前期收集资料时,我公司从企业、生态环境 局档案室收集了相关资料,结合了相关人员访谈情况,整理了企业大 致生产情况如下:

1、相关环保手续履行情况

2002 年原武进县寨桥塑料化工助剂厂更名为"常州灵塑化工有限公司",并于2008年12月申报了"硬脂酸锌粉、二氧化硅粉碎加工,塑料制品项目环境影响登记表"并取得了常州市武进区环境保护局的审批意见,该项目于2009年5月17日由常州市武进区前黄镇人民政府验收通过。

2016年9月,企业委托安徽省四维环境工程有限公司常州分公司编制了"纳入环境保护登记管理建设项目自查评估报告"。

表 3.4-5 企业环保手续履行情况

	企业	E	"三同时"验收			
序号	名称	项目名称	审批通过时 间	批准机构	验收通 过时间	验收 单位
1	原常州	硬脂酸锌粉、二 氧化硅粉碎加 工,塑料制品项 目	2008.12.4	常州市武 进区环境 保护局	2009.5.17	常进黄镇人府
2	, 工有限 公司	纳入环境保护登 记管理建设项目 自查评估报告	2016.9	/	/	/

2、产品方案及生产情况

根据相关资料,结合相关人员访谈情况,关停前原常州灵塑化工有限公司产品情况如下:

表 3.4-6 产品方案表

序号	企业 名称	项目名称	产品名称	设计 能力 (t/a)	实际 产量 (t/a)	备注
		硬脂酸锌粉、	硬脂酸锌粉	150	0	实际未生产
1		二氧化硅粉 碎加工,塑料	二氧化硅粉 碎加工	100	0	试生产失败, 未量产
		制品项目	塑料制品	5 万套/a	0	试生产失败, 未量产
	原常		预混剂	5000	5000	/
2	州塑工限司司		硬脂酸锌	1500	0	实际厂内不设 及硬脂酸锌的 生产,直接外 购1500t成品, 1300t用于预 混剂生产,剩 余200t直接外
			抗静电剂	1000	0	实际外购成品 1000t, 其中 500t 用于预混 剂生产, 剩余

 企业 名称	项目名称	产品名称	设计 能力 (t/a)	实际 产量 (t/a)	备注
					500t 直接外售
		硬脂酸钙	1000	0	实际未生产

3、主要原辅材料使用

根据相关环保资料,结合相关人员访谈情况,关停前原常州灵塑 化工有限公司实际生产项目涉及的原辅料使用情况如下:

 企业 名称	产品名称	名称	组分、规格	环评中 年耗量 (t/a)	实际年耗 量(t/a)	备注
		硬脂酸 锌	/	1300	1300	/
	预混剂	抗静电 剂	烷基磺酸钠	1000	1000	外购成品 1000t,其中 500t用于预混 剂生产,剩余 500t直接外售
		抗氧剂	亚磷酸酯	2700	2700	/
原常州		硬脂酸	纯度 40%	1200	0	实际厂内不
灵塑化 工有限 公司	硬脂酸锌	氧化锌	氧化锌 97%	300	0	设及硬脂酸 锌的生产 , 直 接外购 1500t 成品, 1300t 用于预混剂 生产, 剩余 200t直接外售
	硬脂酸	硬脂酸	纯度 40%	800	0	
	钙	氢氧化 钙	纯度 90%	200	0	实际未生产
	燃料	生物质	木屑	300	200	/

表 3.4-7 主要原辅材料一览表

4、主体工程与公辅工程设施

根据相关环保资料,结合相关人员访谈情况,关停前原常州灵塑 化工有限公司主体工程与公辅工程设施情况如下:

表 3.4-8 主体工程与公辅工程设施一览表

工程类别	名称	设计能力	内容	备注
主体工程	原生产车间	占地面积 670m²	位于厂区南侧	/
心にて 47	原料仓库	占地面积 464m²	位于厂区北侧	/
贮运工程	成品仓库	占地面积 130m²	位于原生产车间西侧	/
		生活用水	840m³/a 由市政供水	/
	给水系统	间接冷却水	10m³/a 由市政供水	/
公用工程		蒸汽用水	160m³/a 由市政供水	/
	加业工厂	生活污水	经化粪池收集后用作农肥	/
	排水系统	蒸汽冷凝水	150m³/a 作为清下水排放	/

5、生产设备

根据相关环保资料,结合相关人员访谈情况,关停前原常州灵塑 化工有限公司涉及的生产设备如下:

表 3.4-9 生产设备一览表

项目	设备名称	规格型号	数量(台/套)
	反应釜	不锈钢, 2000L	4
	卧式混合机	JB-300	2
石田 刘	锥式混合机	JB-4000	2
预混剂	喷雾造粒干燥机	PGL-30B(49+75)	2
	真空泵	/	4
	计量包装机	/	1
订伊 派 夕	脉冲+布袋二级除尘器	/	1
环保设备	生物质燃料蒸汽锅炉除尘器	/	1
辅助设备	生物质蒸汽锅炉	1.5t/h	1

6、生产工艺情况

根据相关资料,结合相关人员访谈情况,关停前原常州灵塑化工

有限公司实际生产项目涉及的生产工艺情况如下:

(1) 预混剂生产工艺

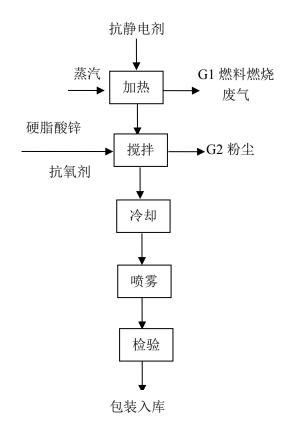


图 3.4-3 预混剂生产工艺流程图

工艺流程简述:

预混剂生产过程无化学反应, 抗静电剂经蒸汽加热套加热至60℃ 左右熔化后, 通过泵加入到反应釜中, 与硬脂酸锌、抗氧剂一起充分 搅拌, 在反应釜内静置自然冷却一段时间后, 由管道输送到喷雾干燥 塔中, 通过喷射将液态物料瞬时转变成粉末状物料, 该过程在密闭的 塔中进行, 无粉尘产生。最后经检验合格后即可包装入库。

蒸汽锅炉使用生物质燃料,产生燃烧废气(G1),搅拌前投料过程会产生粉尘(G2)。

7、产排污情况

(1) 废水

预混剂项目无生产废水产生,蒸汽冷凝水作为清下水排放;职工 生活污水经化粪池收集后用作农肥。

(2) 废气

企业配料、投料和粉尘过程产生的粉尘经设备上方集气罩捕集后,通过1套脉冲+布袋二级除尘装置过滤后,尾气通过1#排气筒(16m)高空排放;2015年后,企业将燃煤锅炉调整为生物质锅炉,生物质燃料燃烧废气通过设备配套的除尘装置净化后,尾气通过2#排气筒(15m)高空排放。

(3) 噪声

预混剂项目涉及的高噪声设备主要为风机、泵和粉碎机等设备,通过隔声窗和减振垫的方式予以减缓噪声。

(4) 固废

企业无危废产生,各项目产生的空包装袋和空包装桶在厂内重复利用,不作为危废管理。一般固废包括脉冲+布袋二级除尘器收尘和滤渣,均回用于生产过程,生物质燃料配套布袋除尘器收尘外售处理,生活垃圾由环卫处理。

3.4.3 目前本地块内个体户生产概况

2021年10月~今,本地块内各车间出租给个体户从事生产。其中原生产车间出租给个体户从事机加工、纸箱加工。原循环水池所在车间出租给个体户从事注塑生产;原原辅料仓库出租给个体户从事减

速机装配。涉及的主要特征污染物为石油烃(C10-C40)。

3.5 周边相邻企业对本地块影响识别

本地块周边企业生产概况汇总见下表:

距离本 企业特 生产概 对本地 序 目前 企业名称 持续时间 征污染 方位 地块最 묵 现状 况 块影响 近距离 物 常州市武进寨 塑料制 几乎无 1986 年~今 在产 桥塑料制品有 紧挨 品、纸管 1 0m/ 影响 加工 限公司

表 3.5-1 本地块周边企业概况汇总表

根据现场踏勘了解到,本地块南侧紧挨常州市武进寨桥塑料制品有限公司,该企业主要从事塑料制品、纸管加工,对本地块几乎无影响。

3.6 地块污染源排查

综上,通过现场踏勘、资料收集和分析、结合地块历史使用情况 及人员访谈,可大致判断厂区内可能对土壤和地下水环境造成污染的 潜在污染物质,汇总见下表:

特征 非"85项",有 非"85项"且无检 是否 序 测方法,说明污染 污染 **"85** 检测方法列出方 CAS 编号 测试项目 备注 묵 项" 物 法名称 物毒性 土壤和沉积物 铜、锌、铅、镍、 氧化 1 1314-13-2 锌 否 铬的测定火焰原 锌 原常州 子吸收分光光度 灵塑化 法(HJ 491-2019) 工有限 苯乙 公司地 2 100-42-5 VOC 是 烯 块相关 过氧化二苯甲酰低 特征污 过氧 毒,误服有害,对 染物 眼睛、皮肤和粘膜 3 化苯 否 94-36-0 甲酰 有刺激作用, 应避 免直接接触。急性

表 3.6-1 本地块内土壤特征污染物汇总表

						中毒: 大鼠经口 LD ₅₀ : 7710mg/kg; 小鼠经口 LD ₅₀ : 5700mg/kg。	
4	砷	7440-38-2	砷	是	/	/	
5	苯并 [a]芘	50-32-8	VOC	是	/	/	
6	油类物质	/	石油烃 (C ₁₀ -C ₄₀)	是	/	/	

根据上表汇总情况,结合《土壤环境质量建设用地土壤污染风险管控标准》(试行)(GB36600-2018),识别本地块主要土壤污染因子为:石油烃(C₁₀-C₄₀)、锌、苯乙烯、砷、苯并[a]芘。

结合《地下水质量标准》(GB/T14847-2017),识别本地块主要地下水污染因子与土壤中污染因子一致。

经现场踏勘,本地块内原构筑物均保留,各车间内生产设备已拆除,厂区内无残留的化学品原辅料、废水、固废等,厂区地表未发现明显的污染痕迹。

3.7 第一阶段土壤污染状况调查总结

根据第一阶段地块现场踏勘、历史资料收集以及人员访谈情况分 析,了解到1987年前本地块最早为农田。1987年~1990年,原武进 县寨桥塑料化工助剂厂在本地块内从事玻璃钢抽油杆生产。1990年 ~2002 年,原武进县寨桥塑料化工助剂厂在本地块内从事 NCP 预混 剂生产。其中 1990~1991 年, 企业自己生产硬脂酸锌作为预混剂的原 料,之后由于自行生产硬脂酸锌成本较高,企业改为直接外购硬脂酸 锌。2002年~2017年,原武进县寨桥塑料化工助剂厂更名为"常州灵 塑化工有限公司",在本地块内仍从事 NCP 预混剂生产。2017 年 12 月30日,原常州灵塑化工有限公司关闭化工项目。2018年~2021年 10月,本地块各车间处于空置状态。2021年10月~今,本地块内各 车间出租给个体户从事机加工、注塑、纸箱加工、减速机装配。由于 原常州灵塑化工有限公司主要从事 NCP 预混剂生产项目。属于《常 州市工业用地和经营性用地土壤环境保护管理办法(试行)》(常政 规[2016]4号) 所明确的金属冶炼、石油加工、化工、焦化、电镀、 制革、危险废物和垃圾收集处置、污水处理等污染行业企业中的化工 企业, 存在污染的可能性。

因此,该地块需要进行第二阶段的土壤污染状况调查。

4 第二阶段土壤污染状况调查

4.1 工作计划

4.1.1 采样方案的制定

4.1.1.1 采样方案依据

本次原常州灵塑化工有限公司地块土壤污染状况调查方案设计阶段,以地块的现状及历史调查资料为依据,按照《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)和《工业企业场地环境调查评估与修复工作指南(试行)》及《建设用地土壤环境调查评估技术指南》相关要求,编制了《原常州灵塑化工有限公司地块土壤污染状况调查方案》。

根据地块平面布置图,通过污染源排查分析,初步确定地块主要可能污染区为工业企业的生产车间、仓库、循环水池等所在的区域。 因此把点位集中分布于上述区域。以地块的现状及历史调查资料为依据,结合前期现场踏勘,按照《建设用地土壤环境调查评估技术指南》,进行土壤和地下水采样点位设置。总体布点原则如下:

- (1) 根据《建设用地土壤环境调查评估技术指南》规定:原则上初步调查阶段,地块面积≤5000m²,土壤采样点位数不少于3个;地块面积>5000m²,土壤采样点位数不少于6个。
- (2) 根据该企业历史、现场构筑物及污染源分布情况,结合人员访谈,点位尽量布设在涉及有毒有害物质储存和使用区域。
- (3) 采用专业判断法进行布点,同时适当兼顾区域平面的布置要求。

4.1.1.2 采样布点方案

本项目地块为原常州灵塑化工有限公司使用,根据企业平面布局情况,厂区内主要分为生产区和非生产区,调查区域分布见图 4.1-1。

①生产区:主要包括原生产车间、原原料仓库、原循环水池区域, 占地面积约为 1254m²,以上区域为本次调查重点区域,共布设4个 水土复合井。

②非生产区:主要包括门卫、办公区域,占地面积约为238m², 非生产区无生产活动,为一般区域,未进行布点。

本次调查阶段,结合地块的实际情况,合计在本地块布设水土复合井4个。

本次调查方案采样点位布设情况见表 4.1-1, 布点图见图 4.1-2。

序号	区域		面积 (m ²)	水土复合井 6.0m(个)
1	后从立太问	东侧	670	1
2	原生产车间	西侧	670	1
3	原循环水池区域		120	1
4	原原料仓库		464	1

表 4.1-1 本地块点位布设一览表

注:原锅炉房由于车间高度不够,钻机无法进入钻井,故将点位布设于原生产车间东侧,与锅炉房相邻。

序号 点位所在区域 布点原因 地下水监测井 生产过程中可能存在原辅材料等 的跑、冒、滴、漏, 导致土壤及地 1 原生产车间东侧 YZMW-1 下水污染 生产过程中可能存在原辅材料等 的跑、冒、滴、漏, 导致土壤及地 原生产车间西侧 2 YZMW-2 下水污染

表 4.1-2 本地块内布点原则和各点位设置的原因

原常州灵塑化工有限公司地块土壤污染状况调查报告

3	原循环水池区域	冷却水循环过程中可能存在池体 或管线破裂,导致土壤及地下水污 染	YZMW-3
4	原原料仓库	原辅料储存过程中可能存在原辅 材料等的跑、冒、滴、漏,导致土 壤及地下水污染	YZMW-4

图 4.1-1 本次土壤污染状况调查采样点位示意图

4.1.1.3 采样深度确定原则

根据原常州灵塑化工有限公司地块引用的《常州市武进寨桥电镀有限公司地块土壤污染状况调查地块的场地土层简要调查》,本地区勘探深度范围内土层可以分为6层,具体如下:

地层 地层 地下水情 水土复合 层底标高(m) 层厚(m) 井深度 名称 编号 况 6m, 土壤主 上层滞水 (1)杂填土 3.00~3.50 $0.88 \sim 1.40$ 要调查①、 层 ②、③层, -1.44~-1.90 隔水层 (2)粉质粘土 4.50~5.00 地下水主 要为上层 浅层承压 滞水层和 -2.70~-3.10 砂质粉土 1.20~1.60 (3) 水层 浅层承压 水层 粉质粘土 夹砂质粉 -8.00~-8.30 4.90~5.50 隔水层 / $\overline{(4)}$ 土 浅层承压 -14.00~-14.30 粉砂 5.70~6.10 (5) 水层 粉质粘土 未揭穿 未揭穿, 大于 1.50 / / (6)

表 4.1-3 水文地质情况及布点深度情况表

本次调查根据《建设用地土壤污染风险管控和修复监测技术导则》 (HJ25.2-2019)要求,结合地块实际土层分布确定本项目土壤和地 下水采样深度,详细见表 4.1-4。

表 4.1-4 本项目地块土壤和地下水采样深度确定原则

·		
《建设用地土壤污染风险》	项目地块实际	方案采料

类型	管控和修复监测技术导则》(HJ25.2-2019)	项目地块实际 土层分布	方案采样深度及 样品送检
	采样深度应扣除地表非土	(1) 地块表层为	(1)水土复合井采样深度
	壤硬化层厚度, 原则上应	杂填土, 厚度为	6.0m;
土壤	采集 0~0.5m 表层土壤样	0.88~1.40m;	(2)水土复合井计划在杂
	品, 0.5m 以下下层土壤样	(2) 杂填土下层	土层、隔水层、浅层承压
	品根据判断布点法采集,	为粉质粘土层构	水层采集土壤样品;

	建议0.5~6m土壤采样间隔	成的相对隔水	(3) 若采样过程中发现设
	不超过2m;不同性质土层	层;	计的采样深度还存在污染
	至少采集一个土壤样品。	(3) 隔水层以下	状况, 将对采样深度进行
	同一性质土层厚度较大或	为砂质粉土构成	适当调整,进一步采集下
	出现明显污染痕迹时, 根	的浅层承压水	层土壤;
	据实际情况在该层位增加	层。	(4) 实际采样过程中, 将
	采样点		结合现场采样情况、地块
			污染状况,同时通过 PID、
			XRF 检测仪的半定量结
			果,适当调整采样深度
	(1) 根据监测目的、所处	(1) 地块地下水	
	含水层类型及其埋深和相	类型分为上层滞	
	对厚度来确定监测井的深	水及浅层承压	
	度, 且不穿透浅层地下水	水;	
ルー	底板;	(2) 上层滞水主	监测井建井深度为 6.0m
地下	(2) 地下水监测目的层与	要赋存于杂填土	(筛管深度为
水	其他含水层之间要有良好	层中;	1.5m~5.5m)
	止水性;	(3) 浅层承压水	
	(3) 一般情况下采样深度	主要埋藏于拟建	
	应在监测井水面下 0.5m 以	场地内③砂质粉	
	下	土、⑤粉砂层中。	

综上,根据引用地块地勘资料结合企业实际情况,确定本次水土 复合井采样深度为 6m,主要采集的是上层滞水层和浅层承压水层的 地下水样品,根据现场实际采样情况,现场土层分布、地下水情况与 引用的岩土工程勘察报告基本相符。具体见下表。

表 4.1-5 本项目地块土壤和地下水采样土层、含水层分布情况

类型	采样深度 (m)	筛管范围 (m)	取样类型
水土复合井	6.0	1.5~5.5	土壤主要采集素填土、粘土、粉土; 地下水主要采集上层滞水层和浅 层承压水层

4.1.1.4 样品采集数量

根据技术指南的要求,现场调查采样时,计划从地表起,3m以内土壤每隔0.5m采集1个样品,3~6m每1m采集1个样品,故每个水土复合井采集9个土壤样品。所有样品都放入500ml聚乙烯材质的自封袋中,先使用PID、XRF检测仪测试各样品的挥发性污染物及重

金属污染物浓度,然后再根据样品的污染物浓度变化情况,每个点位至少送检3个样品。预计本地块土壤污染状况调查所需的土壤总采样量为39个(含1个对照点和2个平行样),检测土壤样品量为15个(含1个对照点和2个平行样);地下水采样量为6个(含1个对照点和1个平行样),检测地下水样品量为6个(含1个对照点和1个平行样)。

4.1.1.5 样品送检依据

现场采集的土壤样品不全部送检,而是根据现场 PID、XRF、感官情况等判断土壤是否存在污染的可能性,每个采样点位送检的样品同时包括表层土壤样品和下层土壤样品,其中水土复合点土壤样品包含含水层样品。对现场判断土壤样品存在 PID、XRF 读数较高,有明显异味,土壤颜色异常等情况的样品进行送检,且该样品下一层(每隔 0.5m 为一层样品)土壤样品也同时送检。

1、PID 检测

在现场用 PID 仪器检测采集的每个样品,半定量检测样品挥发性有机气体浓度,读数越高表明污染越严重。将选择读数高的样品进行检测。

2、XRF 检测

在现场用 XRF 仪器检测采集的每个样品,半定量检测样品重金属浓度,读数越高表明污染越严重。将选择读数高的样品进行检测。

3、感观指标和污染迹象

在现场观察仔细采集的每个样品,从土壤样品的气味、颜色、性

状以及污染迹象定性的判断土壤是否受到污染。将选择感观指标异常、 有明显污染迹象的样品进行检测。

4、样品深度分布

每个采样点将采集不同深度的土壤样品,从而判断土壤污染的垂直分布,划分污染的深度范围。将结合 PID 检测、XRF 检测、感观指标、污染迹象判断的结果,在不同深度范围内选择有代表性的样品进行检测。

本次调查采集的地下水样品全部送检。

4.1.1.6 对照点采样

本项目土壤对照点选择本地块西侧的空地区域,该区域历史上至今一直为空地,未进行过工业开发;由各监测井稳定水位和相对标高可知,本地块地下水流向为自南向北,因此选择处于本地块上游的灵台村民井作为地下水对照点。

4.1.2 样品分析方案的制定

4.1.2.1 检测单位选择

本次原常州灵塑化工有限公司地块土壤污染状况调查时采集的所有土壤和地下水样品,全部送到江苏秋泓环境检测有限公司的实验室进行检测分析,江苏秋泓环境检测有限公司为专业的环境检测公司,通过了国家 CMA 认证(编号: 171012050343)。

4.1.2.2 检测项目

根据第一阶段的土壤污染状况调查结果,本项目地块的特征因子主要为石油烃(C10-C40)、锌、苯乙烯,本地块特征污染因子识别汇总如下表:

序号	特征因子	识别为	是否属于 "85"项	是否有检测方法	是否 检测	
1	石油烃 (C ₁₀ -C ₄₀)	石油烃 (C ₁₀ -C ₄₀)	是	土壤: HJ1021-2019 地下水: HJ894-2017	是	
2	氧化锌	锌	否	土壤: HJ 491-2019 地下水: HJ 700-2014	是	
3	苯乙烯	VOC	是	土壤: HJ 605-2011 地下水: HJ 639-2012	是	
4	过氧化苯甲酰	/	否	无	否	
5	砷	砷	是	土壤: HJ 680-2013 地下水: HJ 700-2014	是	
6	苯并[a]芘	VOC	是	土壤: HJ 605-2011 地下水: HJ 639-2012	是	

表 4.1-6 本项目特征因子识别情况

1、实验室分析项目本次调查实验室分析项目包含《土壤环境质量建设用地土壤污染风险管控标准(试行)》中表1所列建设用地土壤污染风险筛选的必测项目和地块特征因子,同时识别了相应的地下水检测因子。具体分析项目见表4.1-7。

表 4.1-7 本地块实验室分析项目一览表

	土壌	地下水	
	重金属7项	√	√
GB36600-2018 中	挥发性有机物	√	√
"85"项	半挥发性有机物	√	√
	石油烃 (C10-C40)	√	√
其他	pH 值	√	√
	锌	√	√

注: 重金属 7 项因子包括砷、镉、铜、铅、汞、镍、六价铬; 挥发性有机物包括 GB36600 中表 1 共 27 项因子、半挥发性有机物包括 GB36600 中表 1 共 11 项因子。

2、现场检测项目

土壤检测项目:挥发性气体半定量分析(PID便携式光离子化检测仪)、X射线荧光光谱分析(XRF便携式重金属分析仪)。

地下水检测项目:水位、水温、pH值、电导率、溶解氧、氧化还原电位。

4.2 现场采样和实验室分析

4.2.1 野外作业程序

本次土壤污染状况调查野外作业的工作内容,是按照预先设计的 采样点位,规范地采集土壤和地下水样品。为能顺利完成野外作业任 务,应预先确定野外作业程序,做好施工组织设计和作业前的准备工 作,严格按照相关规范落实本次土壤污染状况调查任务。

原常州灵塑化工有限公司地块土壤污染状况调查的土壤样品采集,由我公司技术人员,在参与土壤污染状况调查的采样施工人员配合下按照规范完成,并将所采样品送往检测单位。下面简要介绍本次土壤污染状况调查野外作业过程。

- 1、采样点设计。在调查方案编制阶段,根据调查要求、结合地块历史使用情况和地块现状,有针对性地设置土壤采样点位,客观准确地反映地块污染现状,完成了采样点的设计工作。
- 2、采样点现场定点。根据现场情况,由我公司工作人员按照设计方案,现场完成定点。
- 3、采样点施工。采样施工人员进场采用机械钻孔设备进行钻取 采样。
- 4、样品采集。地块内采样点位采用直推式机械钻机钻取土壤样品,并设立监测井采集地下水样品。
- 5、监测井洗井。建设完的监测井静至8h以上后由建井单位对监测井进行建井洗井并做好记录,建井洗井完成后由检测公司进行采样洗井并做好采样洗井记录。

6、现场观察。采集土壤样品时,技术人员凭个人野外作业经验,通过肉眼观察土壤色泽、土层的分布及含水情况、污染迹象等,并嗅闻样品发出的气味,做好原始记录。

7、现场快速检测。技术人员使用预先标定过的 PID、XRF 检测仪,在现场定性定量分析土壤样品中有机物的挥发性,立即做好记录。并结合土壤样品的土层分布、污染迹象等,判断采样点的污染状况。

采集水样前需测定监测井的水位水质,符合挥发性有机物采样规 范以后才能进行采样检测。

- 8、制样。本项目采用现场吹扫瓶取 VOC 样品的方式进行采样,用一次性针管采集 VOC 样品放入含有保护剂的黄褐色玻璃瓶中保存,将已确定送检的土壤直接制样写上样品名称、编号和采样日期等参数,立即放置到冷藏箱中,低温保存;另外,将已确定送检的地下水样品按制样规范,装入实验室提供的样品瓶,并贴上标签纸,写上样品名称、编号和采样日期等参数,立即放置到冷藏箱中,低温保存。制样过程中严格防止交叉污染。
 - 9、建采样点标志。在采样点位置上做出醒目标志,写上编号。
- 10、采样点测绘。由测绘人员采用卫星定位仪对实际采样点坐标进行测量。

采样工作流程图见图 4.2-1。

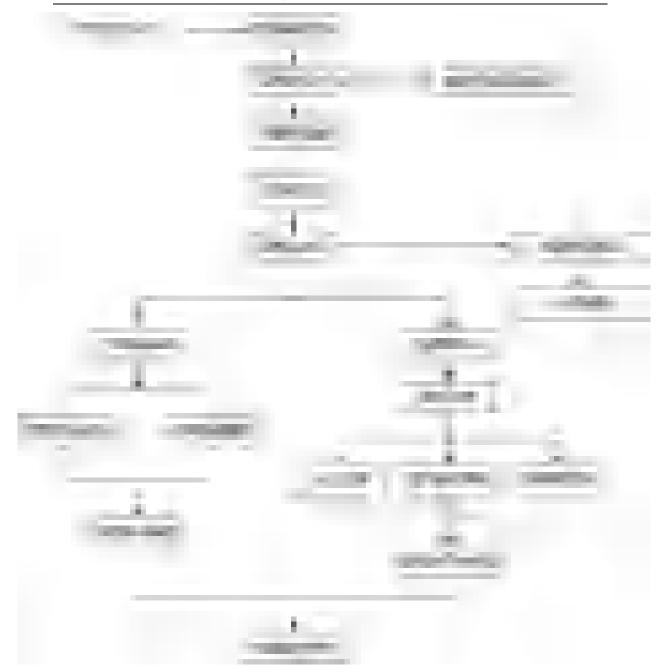


图 4.2-1 现场采样工作流程图

4.2.2 调查准备

土壤污染状况调查之前,除了做好技术准备工作,如编制调查方案、设计采样点位之外,还应进行采样点现场定点,落实采样材料与设备。原常州灵塑化工有限公司地块土壤污染状况调查准备需落实的材料和设备包括:土壤的取样设备、样品瓶、样品的保存装置、安全防护设备、现场快速检测设备等。主要设备及材料清单见表 4.2-1。

	表 4.2-1 现场调查设备及材料一览表
用途	主要设备及材料
现场踏勘、测绘	无人机、RTK
现场快速检测	光离子化检测仪(PID)、X射线荧光光谱分析仪(XRF)、多参数水质分析仪、浊度仪、地下水位测量仪等
土壤样品采集	Geoprobe 钻机、白板、取样管、剖管器、岩心箱、取样铲、非 扰动取样器、土壤采样瓶、采样记录单等
地下水样品采集	Geoprobe 钻机、白板、监测井井管、膨润土、石英砂、贝勒管、地下水采样瓶、地下水洗井记录单、地下水样品采样记录单等
样品保存	保温箱、蓝冰、样品保护剂等
个人安全防护	防毒面罩、防护手套、防护眼镜、防护服、防护鞋、药箱等
样品运输	采样运输车辆

4.2.3 现场调查时采样方案的执行对比情况

本地块土壤污染状况调查,共采集了土壤、地下水样品。现场调查过程中,采样点位、采样量及检测项目与调查方案一致,本次调查共布设水土复合井点位4个(编号LSMW-1、LSMW-2、LSMW-3、LSMW-4)。实际现场作业情况汇总如下:

		• •	*	
· 序 号	现场作业项目	点位编号	作业日期	备注
1	土壤钻孔、采样、 筛分、送样	LSMW-1、LSMW-2、 LSMW-3、LSMW-4、 LSSB-0	2021.12.1	送样日期 2021.12.1
2	地下水建井	LSMW-1、LSMW-2、 LSMW-3、LSMW-4	2021.12.1	/
3	地下水成井洗井	LSMW-1、LSMW-2、 LSMW-3、LSMW-4	2021.12.2	/
4	地下水采样前洗 井、地下水采样	LSMW-1、LSMW-2、 LSMW-3、LSMW-4、 LSMW-0	2021.12.3	送样日期 2021.12.3

表 4.2-2 现场作业情况汇总表

4.2.4 土壤样品采集

在采集的土壤样品,分为表层土壤和深层土壤。不同深度的样品 采集方法也有所不同,我公司技术人员根据现场施工条件与深度,采 用以直推式机械钻机取样的采样方法。

直推式机械钻机采样过程:表层土壤样品采集时,用取样铲适当 刨去裸露在空气中的表面土后,再用取样铲取土;深层土壤采用直推 式机械钻机钻取土样,达到规定的深度后,拔出钻杆取出柱状采样管,技术人员戴上一次性的无污染橡胶手套,再取出采样管中的柱状土样。

用取土器将柱状的钻探岩芯取出后,先采集用于检测VOCs的土壤样品,用刮刀剔除约1cm~2cm表层土壤,用非扰动采样器采集10g原状岩芯的土壤样品推入加有10 mL甲醇(色谱级或农残级)保护剂的40mL棕色样品瓶内。用于检测重金属、SVOCs等指标的土壤样品,用采样铲将土壤转移至广口样品瓶内并装满填实。

4.2.4.1 现场测量

本次调查,水土复合井取样深度为地面以下 6.0m。0~3m,每间

隔 0.5m 采集一个土壤样品,3m~6m,每隔 1.0m 采集 1 个样品。用预 先标定过的 PID、XRF 对现场采集的土样进行了现场检测,根据现场 检测读数和污染迹象,选择土样送检,每个点位至少选择 3 个土壤样 品送实验室分析。

(1) PID、XRF 读数

用预先标定过的 PID、XRF 对现场采集的土样进行了现场检测, 所有土壤样品现场测量的读数见下表。

表 4.2-3 本地块土孔土壤样品现场 PID、XRF 读数表

从 4.2-5 平池人工机工家们 邮况为 TID、ART 庆载本												
点位	 深度(m)				检测项	[目(ppm)				
黑红	体及(III)	铜	镍	铬	铅	镉	汞	砷	锌	PID	样品性状	备注
仪器检	出限	20	25	30	10	5	10	10	25	/		
	0-0.5	31	33	80	20	/	/	20	81	0.1	棕色,杂填土,土质紧实,含水率低,无明显异味	送实验室分析
	0.5-1.0	27	26	33	/	/	/	12	62	0.1	棕色,杂填土,土质紧实,含水率低,无明显异味	/
	1.0-1.5	/	/	/	/	/	/	/	47	0.4	灰色,粘土,土质紧实,含水率低,无明显异味	/
	1.5-2.0	28	/	/	18	/	/	/	64	0.1	灰色,粘土,土质紧实,含水率低,无明显异味	/
LSMW-1	2.0-2.5	/	/	/	13	/	/	12	50	0.4	灰色,粘土,土质紧实,含水率低,无明显异味	送实验室分析
	2.5-3.0	27	/	196	/	/	/	16	74	0	棕色, 粘土, 土质紧实, 含水率低, 无明显异味	/
	3.0-4.0	/	/	/	11	/	/	14	40	0.3	棕色,粘土,土质紧实,含水率低,无明显异味	/
	4.0-5.0	24	/	41	/	/	/	14	41	0.3	棕色, 粉土, 土质紧实, 含水率低, 无明显异味	送实验室分析
	5.0-6.0	/	/	72	/	/	/	14	62	0	棕色, 粉土, 土质紧实, 含水率低, 无明显异味	/
	0-0.5	/	/	65	/	/	/	14	34	0.3	粟色,杂填土,土质紧实,含水率低,无明显异味	送实验室分析
	0.5-1.0	/	/	72	/	/	/	/	/	0.3	粟色,杂填土,土质紧实,含水率低,无明显异味	/
	1.0-1.5	23	/	97	16	/	/	17	40	0.5	粟色,杂填土,土质紧实,含水率低,无明显异味	/
	1.5-2.0	/	/	121	15	/	/	19	135	0.4	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	送实验室分析
LSMW-2	2.0-2.5	11	/	48	/	/	/	/	54	0	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	/
	2.5-3.0	25	/	73	12	/	/	/	55	0.4	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	/
	3.0-4.0	20	35	101	/	/	/	11	50	0.4	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	/
	4.0-5.0	20	/	57	/	/	/	/	35	0	暗棕, 粉土, 土质紧实, 含水率低, 无明显异味	/
	5.0-6.0	22	/	41	/	/	/	14	27	0	暗棕, 粉土, 土质紧实, 含水率低, 无明显异味	送实验室分析

上 /2	次 庄()				检测项	[目(ppm)				
点位	深度(m)	铜	镍	铬	铅	镉	汞	砷	锌	PID	样品性状	备注
	出限	20	25	30	10	5	10	10	25	/		
	0-0.5	/	/	43	/	/	/	15	39	0	暗棕,杂填土,土质紧实,含水率低,无明显异味	送实验室分析
	0.5-1.0	21	/	51	/	/	/	/	/	0	暗棕,杂填土,土质紧实,含水率低,无明显异味	/
	1.0-1.5	/	/	52	/	/	/	11	/	0.2	暗棕,杂填土,土质紧实,含水率低,无明显异味	/
	1.5-2.0	/	/	72	/	/	/	/	37	0.3	棕色,粘土,土质紧实,含水率低,无明显异味	/
LSMW-3	2.0-2.5	/	/	47	/	/	/	11	/	0.1	棕色,粘土,土质紧实,含水率低,无明显异味	/
	2.5-3.0	23	/	46	/	/	/	12	/	0.2	棕色,粘土,土质紧实,含水率低,无明显异味	送实验室分析
	3.0-4.0	/	/	174	/	/	/	18	60	0.3	棕色, 粘土, 土质紧实, 含水率低, 无明显异味	/
	4.0-5.0	25	/	73	/	/	/	/	45	0.4	黄棕色, 粉土, 土质紧实, 含水率低, 无明显异味	送实验室分析
	5.0-6.0	25	/	337	20	/	/	/	192	0.7	黄棕色, 粉土, 土质紧实, 含水率低, 无明显异味	/
	0-0.5	/	/	/	18	/	/	/	47	0	灰色,杂填土,土质紧实,含水率低,无明显异味	送实验室分析
	0.5-1.0	/	/	/	13	/	/	/	43	0.1	灰色,杂填土,土质紧实,含水率低,无明显异味	/
	1.0-1.5	/	/	62	13	/	/	/	/	0	灰色,杂填土,土质紧实,含水率低,无明显异味	/
	1.5-2.0	/	/	79	/	/	/	/	50	0.2	灰色,粘土,土质紧实,含水率低,无明显异味	/
LSMW-4	2.0-2.5	/	/	72	10	/	/	/	46	0.2	灰色,粘土,土质紧实,含水率低,无明显异味	/
	2.5-3.0	26	/	/	13	/	/	/	/	0.1	灰色,粘土,土质紧实,含水率低,无明显异味	送实验室分析
	3.0-4.0	/	/	59	/	/	/	12	41	0	暗棕,粘土,土质紧实,含水率低,无明显异味	/
	4.0-5.0	21	/	66	/	/	/	/	50	0.6	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	送实验室分析
	5.0-6.0	/	/	42	/	/	/	/	/	0.1	暗棕, 粘土, 土质紧实, 含水率低, 无明显异味	/
LSSB-0	0-0.2	20	/	57	13	/	/	/	59	0.2	棕色,杂填土,土质紧实,含水率低,无明显异味	送实验室分析

注:"/"表示低于仪器检出限。

(2) 现场污染迹象

原常州灵塑化工有限公司地块土壤污染状况调查钻孔及取样过程中,未发现明显污染迹象,使用XRF、PID现场筛分时,无异常高值数据。

4.2.4.2 样品送检筛选

现场所采集的土壤样品全部送到江苏秋泓环境检测有限公司实验室,根据现场样品PID、XRF检测、土样感观指标(主要有气味、颜色、性状)以及污染迹象、样品深度分布的原则综合判断、筛选样品进行检测。对照点位采集的样品无需筛选,直接送实验室分析。

1、PID、XRF 检测

在现场用PID、XRF仪器检测采集的每个样品,仪器读数越高表明污染越严重。选择读数高的样品同时兼顾土层样品的分布情况送实验室检测。

2、感观指标和污染迹象

在现场观察仔细采集的每个样品,从土壤样品的气味、颜色、性状以及污染迹象定性的判断土壤是否受到污染。将选择感观指标异常、有明显污染迹象的样品进行检测。

3、样品深度分布

每个采样点将采集不同深度的土壤样品,从而判断土壤污染的垂直分布,划分污染的深度范围。将结合 PID、XRF 检测、感观指标、污染迹象判断的结果,在不同深度范围内选择有代表性的样品进行检测。现场采样时.各点位土壤样品 PID、XRF 读数、感官指标及污染

痕迹的判断,未发现有明显受污染土壤。根据检测仪器及感官指标, 各点位选取了至少3个土壤样品进行了实验室分析。

4.2.4.3 现场土壤采样汇总

原常州灵塑化工有限公司地块土壤污染状况调查现场采样时,共布设4个水土复合井、1个土壤对照点位,现场土壤采样、送检样品量汇总见表4.2-4。

地块类别	布设点位 (个)	采样量 (个/点)	采样量小计 (个)	送检量 (个)	检测样品量 (个)
地块内水 土复合井	4	9	36	12	12
地块外对 照点位	1	1	1	1	1
平行样	/	/	2	2	2
合计	5(含1个对照点位)	/	39	15	15

表 4.2-4 现场土壤采样、送检样品量汇总

4.2.5 监测井安装与地下水采样

4.2.5.1 监测井安装

地下水监测井是在机械钻孔后,通过井管安装形成的。钻孔完成后,安装一根封底的外径 50mm 硬 PVC 井管,硬 PVC 井管由底部密闭的的滤水管和延伸到地表面的白管两部分组成。滤水管部分是含水平细缝(缝宽 0.25mm)的硬 PVC 花管。监测井的深度和滤水管的安装位置,由专业人员在现场根据监测井初见地下水位的相对位置,并根据各监测井的不同监测要求综合考虑后设定。

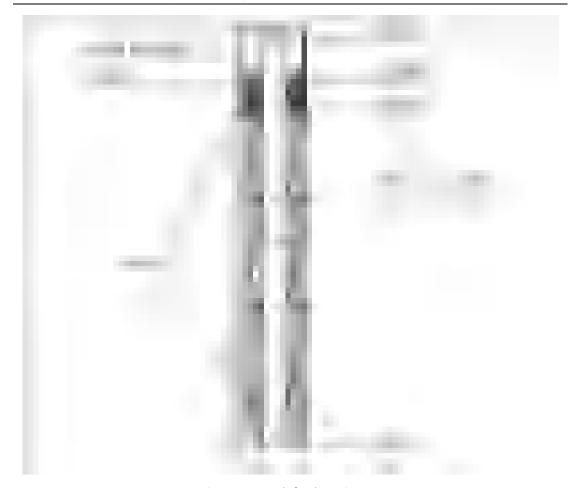


图 4.2-2 监测井剖面图示例

监测井滤水管外侧周围,用粒径≥0.25mm的清洁石英砂回填作为滤水层,石英砂从滤管底部一直回填至花管顶端以上0.5米处,然后再回填入不透水的膨润土。最后,在井口回填至自然地坪处。监测井挖掘记录及监测井安装简图。潜水观测井剖面图示例见图 4.2-1。

地下水的样品采集、样品运输和质量保证等,按照《地下水环境监测技术规范》(HJ/T164-2020)和《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)执行。

4.2.5.2 地下水疏浚及采样

(一) 建井洗井

监测井建设完成后,至少稳定 24h 后开始成井洗井,本次建井洗

井记录具体见附件。使用贝勒管取出水土复合井容积 3~5 倍的水量清洗水土复合井, 井体积用下式计算:

式中: V—井体积, ml;

dc—井管直径, cm;

h—井管中的水深, cm;

db—钻孔直径, cm;

θ—填料的孔隙度。

成井洗井满足 HJ25.2 的相关要求,即所有的污染物或钻井产生的岩层破坏以及来自天然岩层的细小颗粒都必须去除,以保证出流的地下水中没有颗粒。使用便携式水质测定仪对出水进行测定,当浊度大于10NTU时,每间隔约1倍井体积的洗井水量后对出水进行测定,结束洗井同时满足以下条件:

- a)浊度连续三次测定的变化在 10%以内;
- b)电导率连续三次测定的变化在 10%以内;
- c)pH 连续三次测定的变化在±0.1 以内。

成井洗井结束后,监测井至少稳定 24h 后开始采集地下水样品。

(二)采样洗井

采用贝勒管按照以下步骤进行采样洗井:

- a)将贝勒管缓慢放入井内,直至完全浸入水体中,之后缓慢、匀速地提出井管;
 - b)将贝勒管中的水样倒入水桶,估算洗井水量,直至达到3倍井

体积的水量:

c)在现场使用便携式水质测定仪,每间隔 5~15min 后测定出水水质,直至至少 3 项检测指标连续三次测定的变化达到表 5.2-3 中的稳定标准;如洗井水量在 3~5 倍井体积之间,水质指标不能达到稳定标准,继续洗井;如洗井水量达到 5 倍井体积后水质指标仍不能达到稳定标准,可结束洗井,并根据地下水含水层特征、监测井建设过程以及建井材料性状等实际情况判断是否进行样品采集。

表 4.2-5 地下水采样洗井出水水质的稳定标准

(三) 地下水洗井实测参数

本次调查成井洗井、采样前洗井实测参数如下:

	the 112 give 1 4 with 100 to 1 November 2016												
井位编号	水位 (m)	水温 (°C)	大气 压 (KPA)	pH 值 (无 量纲)	电导率 (μs/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)						
LSMW-1	4.27	17.1	101.7	6.9	16600	1.5	16						
LSMW-2	4.12	18.9	101.7	7.2	1009	1.5	41						
LSMW-3	3.97	19.0	101.7	7.2	2670	1.6	36						
LSMW-4	3.42	18.5	101.7	7.4	1067	1.4	-20						

表 4.2-6 地下水成井洗井现场结果汇总表

井位编号	水位 (m)	水温 (°C)	大气 压 (KPA)	pH 值 (无 量纲)	电导率 (μs/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)					
LSMW-1	3.86	17.3	102.1	6.9	15800	1.6	16					
LSMW-2	3.62	18.7	102.1	7.2	1087	1.5	39					
LSMW-3	3.41	18.6	102.1	7.1	2740	1.6	37					
LSMW-4	3.13	18.2	102.1	7.2	1051	1.3	-16					
LSMW-0	1.52	16.1	102.1	7.5	486	4.8	50					

表 4.2-7 地下水采样前洗井现场结果汇总表

采样以及样品保存,均按国内相关标准进行,以最大程度地避免样品之间的交叉污染。所有水样采集后,均迅速灌装入由检测单位提供的带有标签以及保护剂的专用样品瓶中,并保存在装有冰袋的冷藏箱中。

4.2.5.3 地下水位高程

在监测井水样采集之前,在地块上进行了全面的高程测量工作,包括监测井的 PVC 管口、原始地坪和地下水稳定水位高程。监测井的主要特征参数和高程测量结果见下。

	井口标高 (m)	地面高程 (m)	井口高度 (m)	稳定水位距离 井口高度 (m)	稳定水位相对 标高(m)
LSMW-1	2.75	2.75	0	3.86	-1.11
			0		
LSMW-2	2.59	2.59	0	3.62	-1.03
LSMW-3	2.22	2.22	0	3.41	-1.19
LSMW-4	2.01	2.01	0	3.13	-1.12
LSMW-0	2.61	2.61	0	1.52	1.09

表 4.2-8 监测井的特征参数和高程测量结果

由各监测井稳定水位相对标高可知,本地块地下水相对标高总体为南高北低,地下水大致流向为由南向北流动。

4.2.5.4 现场地下水采样汇总

原常州灵塑化工有限公司地块土壤污染状况调查现场采样时,地

块内共计布设4个水土复合井,根据实际测量计算,本地块地下水大致流向为由南向北流动,因此本次选择地块南侧约190米处,处于本地块上游的灵台村民井作为地下水清洁对照点采样对比分析。本次土壤污染状况调查的现场地下水采样、送检样品量汇总见下表。

布设监测井 成井 井深 采样量 送检量 检测样品 地块类别 (个) (个) (个) (m)(个) 量(个) 地块内监测井 4 4 6 4 4 4 2(含1 地块外对照点 2(含1个 2(含1个 1 1 / 个平行 (灵台村民井) 平行样) 平行样) 样) 合计 5 5 / 6 6 6

表 4.2-9 现场地下水采样、送检样品量汇总

4.2.7 调查点位和检测项目汇总

现场调查采样期间,根据现场建筑物位置确定水土复合井点位, 再由测绘人员进行精准复测,测量坐标。本次具体土壤、地下水采样 点坐标见表 4.2-10;本次地块土壤污染状况调查采样点位编号和污染 物检测指标具体见表 4.2-11。

表 4.2-10 采样点坐标一览表

样品 分类	点位编号	布点位置	检测因子	采样 深度	现在地面 情况	历史地面 情况	北纬	东经	送检情况 (含平行样)
	LSMW-1	原生产车间东侧		6m	硬化地面	硬化地面	31.5793	119.8684	送检3个样品
	LSMW-2(平)	原生产车间西侧		6m	硬化地面	硬化地面	31.5793	119.8682	送检4个样品
土壤	LSMW-3	原循环水池附近	pH+基本 45 项+石油烃 (C ₁₀ -C ₄₀) +锌	6m	硬化地面	硬化地面	31.5795	119.8681	送检3个样品
	LSMW-4	原原料仓库	(C10-C40)	6m	硬化地面	硬化地面	31.5794	119.8685	送检3个样品
	LSSB-0(平)	地块外北侧		表层	植被覆盖	植被覆盖	31.5795	119.8688	送检2个样品
	LSMW-1	原生产车间东侧		6m	硬化地面	硬化地面	31.5793	119.8684	送检1个样品
	LSMW-2	原生产车间西侧	**. *	6m	硬化地面	硬化地面	31.5793	119.8682	送检1个样品
地下水	LSMW-3	原循环水池附近	¬pH+基本 45 项+石油烃¬ - (C ₁₀ -C ₄₀) +锌 -	6m	硬化地面	硬化地面	31.5795	119.8681	送检1个样品
	LSMW-4	原原料仓库		6m	硬化地面	硬化地面	31.5794	119.8685	送检1个样品
	LSMW-0 (平)	灵台村民井		/	/	/	31.5766	119.8683	送检2个样品

注:点位编号标注"平"的为取平行样,"基本 45 项"为 GB36600-2018 中要求的 45 项必测项。

表 4.2-11 调查采样点位编号和污染物检测指标

									监测指	标				
点位编号		监测对象	象重金属							VOCa	SVOC-	石油烃	I I	<i>L</i> -3
			砷	六价铬	铜	镉	铅	镍	汞	VOCs	SVOCs	$(C_{10}-C_{40})$	рН	锌
I CMW 1	0-0.5m	杂填土	√	√	√	√	√	√	√	√	√	√	√	√
LSMW-1	2.0-2.5m	粘土	√	√	√	√	√	√	√	√	√	√	√	√

	4.0-5.0m	粉土	V	V	V	V	V	V	V	√	√	√ V	V	
	0-0.5m	杂填土	√	√	√	√	1	√	√	1	1	√ √	1 1	1
	1.5-2.0m	粘土	√	√	√	√	1	√	√	√	√	√ √	\ \ \ \	1
LSMW-2	1.5-2.0m 1.5-2.0m(平行)	粘土	\ √	_\	√ √		√	\ √	√ √	\ \ \ \ \	√ √	√ √	\ \ \ \	1
			√ √	`	,			· '	,	,	,	,	<u> </u>	_\
	3.0-4.0m	粘土	,	√	√ .	√	√	√ .	√	√	√ .	√	√	
	0-0.5m	杂填土		√	√		√	√	√	√	√	√	√	√
LSMW-3	3.0-4.0m	粘土	$\sqrt{}$	√	√	$\sqrt{}$	√	√	√	√	√	√		
	5.0-6.0m	粉土	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		√				$\sqrt{}$		
	0-0.5m	杂填土	√	√	√		√	1	√	1	√	√	√	
LSMW-4	1.5-2.0m	粘土	√	V	√		V	√	V	√	√	√	√	√
	4.0-5.0m	粘土	√	V	V		V	V	V	√	√	√	√	√
LSSB-	0 土壤对照点	杂填土	√	V	√		√	√	V	√	√	√	√	√
LSSI	3-0(平行)	杂填土	√	V	V		V	√	V	√	√	√	√	√
I	LSMW-1		√	V	√	$\sqrt{}$	√	√	√	√	√	√	√	√
I	LSMW-2		√	√	√		√	√	√	√	√	√	√	√
I	LSMW-3	ルモル		√	√		√	√	√	√	√	√	√	1
I	LSMW-4	地下水	√	√	√	√	√	√	√	√	√	√	√	√
LSMW-0	LSMW-0 地下水对照点		$\sqrt{}$	√	√	$\sqrt{}$	√	√	√	√	√	√	√	√
LSMW-0(平行)				√	√	$\sqrt{}$	√	√	√	√	√	√	√	
	小计					15				15	15	15	15	15
			6							6	6	6	6	6

4.2.8 实验室分析

类

原常州灵塑化工有限公司地块土壤污染状况调查现场采集的土 壤、地下水样品,其中土壤样品15个(包括1个土壤对照点,2个 平行样),地下水样品6个(包括1个地下水对照点,1个平行样)。 首次按计划有选择性地先委托检测单位对所有点位的部分样品进行 分析, 待取得污染物检测数据后, 再对污染较严重的点位, 或污染虽 不严重,但检测出较多污染物的点位,再选择对部分样品进行加测, 本次检测数据均在相关标准范围内, 因此不再加测。

本次原常州灵塑化工有限公司地块土壤污染状况调查. 现场对土 壤样品进行了PID、XRF检测。通过筛选后共对15个土壤样品、6 个地下水样品进行了送检分析。分别对土壤、地下水样品检测了VOCs (27 项)、SVOCs(11 项)、重金属(7 项)、石油烃(C₁₀-C₄₀)、 pH、锌。分析指标及检测方法见下表。

方法检出限 分析指标 方法 主要设备 型号 别 水质 pH 值的测定 pH 值 玻璃电极法 GB/T pH 计 SX751 型 / 6920-1986 水质水温的测定温 度计或颠倒温度计 水温 / / 测定 GB/T 13195-1991 地 pH/ORP/ 下 水质溶解氧的测定 水 电导率/溶 溶解氧 电化学探头法 HJ SX751 型 解氧测量 506-2009 仪 电极法《水和废水监 pH/ORP/ 测分析方法》(第四 电导率/溶 氧化还原电位

表 4.2-12 分析指标检测方法

版) 国家环境保护

总局(2002年) 3.1.10

SX751 型

解氧测量

仪

六价铬	水质六价铬的测定 二苯碳酰二肼分光 光度法 GB/T 7467-1987	可见分光 光度计	T6 新悦	0.004mg/L
铜	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.08μg/L
镍	水质 65 种元素的测 定电感耦合等离子 体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.06μg/L
铅	水质 65 种元素的测 定电感耦合等离子 体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.09μg/L
镉	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.05μg/L
砷	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.12μg/L
汞	水质汞、砷、硒、铋 和锑的测定原子荧 光法 HJ 694-2014	双道原子 荧光光度 计	AFS-230 E	$0.04 \mu g/L$
锌	水质 65 种元素的测定电感耦合等离子体质谱法 HJ 700-2014	电感耦合 等离子体 质谱仪	iCAP RQ	0.67μg/L
石油烃(C10-C40)	水质可萃取性石油 烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法 HJ 894-2017	气相色谱 仪	AFS-230 E	0.01mg/L
氯甲烷	生活饮用水标准检 验方法有机物指标 GB/T 5750.8-2006	气相质谱 仪	TRACE 1300/ISQ 7000	1.0μg/L
四氯化碳				1.5µg/L
氯仿	水质挥发性有机物		TRACE	1.4μg/L
1,1-二氯乙烷	── 的测定吹扫捕集/气 ── 相色谱-质谱法 HJ	气相质谱 仪	1300/ISQ	1.4μg/L
1,2-二氯乙烷	639-2012		7000	1.4µg/L
1,1-二氯乙烯				1.2μg/L

原-1,2-二氯乙烯 反-1,2-二氯乙烯 二氯甲烷 1,2-二氯丙烷 1,1,1,2-四氯乙烷 1,1,1,2-四氯乙烷 1,1,1,2-三氯乙烷 三氯乙烯 1,1,2-三氯乙烷 三氯乙烯 1,2,3-三氯丙烷					
1.0μg/L 1.2-二氯丙烷 1.0μg/L 1.2μg/L 1.2μg/L 1.1μg/L 1.2μg/L 1.1μg/L 1.2μg/L 1	顺-1,2-二氯乙烯				1.2μg/L
1,2-二泉丙戌 1,1,1,2-四泉乙戌 1,1,1,2-四泉乙戌 四泉乙烯 1,1,1,1-三泉乙戌 三泉乙戌 三泉乙烯 1,1,2,3-三泉丙烷 泉乙烯 1,2-二泉苯 1,2-二泉苯 1,4-二泉苯 乙苯 東子山二甲苯十对二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第	反-1,2-二氯乙烯				1.1µg/L
1,1,2,2-四氯乙烷 1,1,2,2-四氯乙烷 四氯乙烯 1,1,1-三氯乙烷 1,1,1-三氯乙烷 三氯乙烯 1,2,3-三氯丙烷 氯乙烯 1,4-二氯苯 1,4-二氯苯 1,4-二氯苯 1,4-二氯苯 ベニー甲苯 中華 第二甲苯十对二 甲苯 第二甲苯十对二 甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯	二氯甲烷				1.0µg/L
1.1,2,2-四氯乙烷 四氯乙烯 1.1,1,1-三氯乙烷 1,1,2,3-三氯丙烷 氯之烯 1,2,3-三氯丙烷 氯之烯 第二十二氯苯 1,4-二氯苯 1,4-二氯苯 乙苯 苯乙烯 甲苯 同二甲苯+对二 甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯 第二甲苯	1,2-二氯丙烷				1.2μg/L
1.2 μg/L	1,1,1,2-四氯乙烷				1.5µg/L
1,1,1-三氟乙烷	1,1,2,2-四氯乙烷				1.1µg/L
1.1,2-三氯乙烷 三氯乙烯 1.2,3-三氯丙烷 氯之烯 菜	四氯乙烯				1.2μg/L
三泉乙烯 1.2µg/L 1,2,3-三泉丙烷 1.2µg/L 東太 1.5µg/L 東京 1.4µg/L 1,2-二泉茶 0.8µg/L 1,4-二泉茶 0.8µg/L 0.8µg/L 0.8µg/L 0.8µg/L 0.8µg/L 0.8µg/L 1.4µg/L 1.4µg/L 1.4µg/L 1.4µg/L 1.0µg/L 1.0µg/L 1.0µg/L	1,1,1-三氯乙烷				1.4μg/L
1,2,3-三泉丙烷 泉乙烯 1.2μg/L 1.5μg/L 1.4μg/L 1.0μg/L 1.0μg/L 1.0μg/L 0.8μg/L 0.6μg/L 1.4μg/L 1.4μg/L 1.4μg/L 1.4μg/L 2.2μg/L 2.2μg/L 1.0μg/L 1.0	1,1,2-三氯乙烷				1.5μg/L
 泉乙烯 菜 泉菜 1.2-二泉菜 1,4-二泉菜 2.8μg/L 0.8μg/L 0.8μg/L 0.8μg/L 0.8μg/L 0.8μg/L 0.8μg/L 0.6μg/L 1.4μg/L 1.4μg/L 2.2μg/L 1.4μg/L 1.0μg/L 	三氯乙烯				1.2μg/L
TRACE 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 0.8 μg/L 1.4 μg/L 1.4 μg/L 1.4 μg/L 1.4 μg/L 1.4 μg/L 1.0 μg/L	1,2,3-三氯丙烷				1.2μg/L
(1.0 mg/L 1.2-二 泉 末 1.0 mg/L 1.4-二 泉 末 1.4 mg/L 2.2 mg/L 0.8 mg/L 0.8 mg/L 0.8 mg/L 0.8 mg/L 0.8 mg/L 0.6 mg/L 1.4 mg/L 1.4 mg/L 1.4 mg/L 2.2 mg/L 2.2 mg/L 1.4 mg/L 1.0	氯乙烯				1.5μg/L
1,2-二泉苯 1,4-二泉苯	苯				1.4μg/L
1,4-二氯苯 0.8μg/L 0.8μg/L 0.8μg/L 0.6μg/L 0.6μg/L 0.6μg/L 1.4μg/L 1.4μg/L 1.4μg/L 1.4μg/L 2.2μg/L 2.2μg/L 1.0μg/L 1	氯苯				1.0µg/L
	1,2-二氯苯				0.8μg/L
末	1,4-二氯苯				0.8μg/L
甲苯 1.4μg/L 2.2μg/L 2.2μg/L 1.4μg/L 2.2μg/L 1.4μg/L 1.0μg/L 1.0μg/	乙苯				0.8μg/L
i	苯乙烯				0.6µg/L
マニ甲苯	· ·				1.4μg/L
7.0 mg/L 1.0 mg	, , , ,				2.2μg/L
本接 1.0μg/L 1.0μg/	邻二甲苯				1.4µg/L
2-氯酚 1.0μg/L 苯并[a]蔥 气相色谱-质谱法《水和废水监测分析方法》(第四版) 国家环境保护总局(2002年)4.3.2 1.0μg/L 末并[k]荧蒽 1.0μg/L 末并[a, h]蔥 1.0μg/L 市并[1,2,3-cd]芘 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L	硝基苯				1.0μg/L
苯并[a]蔥 气相色谱-质谱法 《水和废水监测分 析方法》(第四版) 国 家环境保护总局 (2002 年)4.3.2 「相色谱 人 TRACE 1.0 μ g/L 1.0 μ g/L 本并[k]荧蔥 京环境保护总局 (2002 年)4.3.2 1.0 μ g/L 1.0 μ g/L 市并[1,2,3-cd]芘 1.0 μ g/L 1.0 μ g/L 1.0 μ g/L 1.0 μ g/L 1.0 μ g/L 1.0 μ g/L	苯胺				1.0μg/L
 苯并[a]芘 苯并[b]荧蔥 苯并[k]荧蔥 苯并[k]荧蔥 二苯并[a, h]蔥 市并[1,2,3-cd]芘 「相色谱-质谱法《水和废水监测分析方法》(第四版)国家环境保护总局(2002年)4.3.2 「二本并[a, h]蔥 「前并[1,2,3-cd]芘 「二本并[a, h]蔥 「二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	2-氯酚				1.0μg/L
苯并[a]芘 《水和废水监测分析方法》(第四版) 国家环境保护总局(2002年)4.3.2 气相色谱仪 1.0μg/L 工業并[a, h]蔥 二苯并[a, h]蔥 1.0μg/L 市并[1,2,3-cd]芘 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L 1.0μg/L	苯并[a]蒽	与相名谜 压涎比			1.0μg/L
本 升 [b] 灾 恩	苯并[a]芘		与与友兴	TRACE	1.0μg/L
苯并[k]荧蔥 家环境保护尽局 (2002 年)4.3.2 1.0μg/L 二苯并[a, h]蔥 1.0μg/L 茚并[1,2,3-cd]芘 1.0μg/L	苯并[b]荧蒽	析方法》(第四版) 国 家环境保护总局		1300/ISQ	1.0μg/L
点 1.0μg/L 二苯并[a, h]蔥 1.0μg/L 茚并[1,2,3-cd]芘 1.0μg/L	苯并[k]荧蒽			7000	1.0μg/L
茚并[1,2,3-cd]芘 1.0μg/L	薜	(2002)4.3.2			1.0μg/L
	二苯并[a, h]蒽				1.0μg/L
茶 1.0μg/L	茚并[1,2,3-cd]芘				1.0μg/L
	萘				1.0μg/L

	pH 值	土壤 pH 值的测定电 位法 HJ 962-2018	pH 计	FE28	/	
	六价铬	土壤和沉积物六价 铬的测定碱溶液提取-火焰原子吸收分 光光度法 HJ 1082-2019	火焰原子 吸收分光 光度计	GGX-800	0.5mg/kg	
	铜	土壤和沉积物 铜、 锌、铅、镍、铬的测 定 火焰原子吸收分 光光度法 HJ 491-2019	火焰原子 吸收分光 光度计	GGX-910	1mg/kg	
	镍	土壤和沉积物 铜、 锌、铅、镍、铬的测 定 火焰原子吸收分 光光度法 HJ 491-2019	火焰原子 吸收分光 光度计	GGX-910	3mg/kg	
	铅	土壤质量 铅、镉的 测定 石墨炉原子吸 收分光光度法 GB/T 17141-1997	石墨炉原 子吸收分 光光度计	AA-6880	0.1mg/kg 0.01mg/kg	
土壤	镉	土壤质量 铅、镉的 测定 石墨炉原子吸 收分光光度法 GB/T 17141-1997	石墨炉原 子吸收分 光光度计	iCE3400	0.01mg/kg	
	总汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013	双道原子 荧光光度 计	AFS-230 E	0.002mg/kg	
	砷	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013	双道原子 荧光光度 计	AFS-230 E	0.01mg/kg	
	锌	土壤和沉积物 铜、 锌、铅、镍、铬的测 定 火焰原子吸收分 光光度法 HJ 491-2019	火焰原子 吸收分光 光度计	GGX-910	1mg/kg	
	石油烃(C10-C40)	土壤和沉积物石油 烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法 HJ 1021-2019	气相色谱 仪	TRACE 1300	6mg/kg	
	四氯化碳	土壤和沉积物挥发	气相质谱	TRACE	0.0013mg/kg	
	氯仿	性有机物的测定 吹	仪	1300/ISQ	0.0011mg/kg	

氯甲烷	扫捕集/气相色谱-质		7000	0.001mg/kg
1,1-二氯乙烷	谱法 HJ 605-2011			0.0012mg/kg
1,2-二氯乙烷				0.0013mg/kg
1,1-二氯乙烯				0.001mg/kg
顺-1,2-二氯乙烯				0.0013mg/kg
反-1,2-二氯乙烯				0.0014mg/kg
二氯甲烷				0.0015mg/kg
1,2-二氯丙烷				0.0011mg/kg
1,1,1,2-四氯乙烷				0.0012mg/kg
1,1,2,2-四氯乙烷				0.0012mg/kg
四氯乙烯				0.0014mg/kg
1,1,1-三氯乙烷				0.0013mg/kg
1,1,2-三氯乙烷				0.0012mg/kg
三氯乙烯				0.0012mg/kg
1,2,3-三氯丙烷				0.0012mg/kg
氯乙烯				0.001mg/kg
苯				0.0019mg/kg
氯苯				0.0012mg/kg
1,2-二氯苯				0.0015mg/kg
1,4-二氯苯				0.0015mg/kg
乙苯				0.0012mg/kg
苯乙烯				0.0011mg/kg
甲苯				0.0013mg/kg
间二甲苯+对二 甲苯				0.0012mg/kg
邻二甲苯				0.0012mg/kg
硝基苯				0.09mg/kg
苯胺			TRACE	0.1mg/kg
2-氯酚	土壤和沉积物半挥	左加丘兴	1300/ISQ	0.06mg/kg
苯并[a]蒽	发性有机物的测 定 气相色谱-质谱法	气相质谱仪	7000、 TRACE	0.1mg/kg
苯并[a]芘	НЈ 834-2017	, -	1300/ISQ	0.1mg/kg
苯并[b]荧蒽			QD	0.2mg/kg
苯并[k]荧蒽				0.1mg/kg

薜		0.1mg/kg
二苯并[a, h]蒽		0.1mg/kg
茚并[1,2,3-cd]芘		0.1mg/kg
茶		0.09mg/kg

4.3 质量保证和质量控制

在原常州灵塑化工有限公司地块土壤污染状况调查过程中,从方案设计,到现场样品采集、实验室检测,都严格按规范落实质量保证和质量控制措施,确保获取的样品与取得的检测数据真实可信。

4.3.1 现场质量控制

现场采样时详细填写现场记录单,比如土层深度、土壤质地、气味、颜色、气象条件等,以便为分析工作提供依据。采样过程中采样员佩戴一次性 PE 手套,每次取样后进行更换。

土壤样品采集:地块采集的土壤样品,分为表层土壤和深层土壤。 技术人员根据现场施工条件与深度,采用直推式机械钻机取样的采样 方法钻取土样,达到规定的深度后,技术人员戴上一次性的无污染橡 胶手套,再取出采样管中的柱状土样。

用取土器将柱状的钻探岩芯取出后,先采集用于检测 VOCs 的土壤样品,用刮刀剔除约 1cm~2cm 表层土壤,用非扰动采样器采集 10g 原状岩芯的土壤样品推入加有 10mL 甲醇(色谱级或农残级)保护剂的 40mL 棕色样品瓶内。用于检测重金属、SVOCs 等指标的土壤样品,用采样铲将土壤转移至广口样品瓶内并装满填实。本次调查土孔取样深度为地面以下 3.0m. 监测井取样深度为地面以下 6.0m。

地下水采样:在监测井疏浚稳定后24小时,再对监测井进行地下水采样。采样前先用一次性贝勒管取出监测井容积3倍的水量清洗

监测井。在洗井完成后水位稳定再用贝勒管取样,为避免监测井中的地下水发生混浊,贝勒管的放入需缓慢轻放。装瓶时先用所取水样润洗瓶子,然后盛满,加入保护剂,以保证运至检测单位的样品质量。根据以下顺序依次进行样品采集和灌装:挥发性有机物;半挥发性有机物;重金属。

全程序空白样:现场采样时,将纯水带至现场代替样品,采入样品,按规定加入固定剂,作为全程序空白样。

现场平行样: 本次调查分别取了相应的土壤、地下水平行样。

所有水样采集后,均迅速灌装入由检测单位提供的带有标签以及 保护剂的专用样品瓶中,并保存在装有冰袋的冷藏箱中。

4.3.2 样品运输

所有样品均迅速转入由检测单位提供的带有标签以及保护剂的 专用样品瓶中,并保存在装有冰袋的冷藏箱中,随同样品跟踪单一起 通过汽车运输,直接送至检测单位进行分析。

样品运输跟踪单提供了一个准确的文字跟踪记录,来表明每个样品从采样到检测单位分析全过程的信息。样品跟踪单经常被用来说明样品的采集和分析要求。现场专业技术人员在样品跟踪单上记录的信息主要包括:样品采集的日期和时间;样品编号;采样容器的数量和大小,以及样品分析参数等内容。送交检测单位的样品跟踪单文件见附件。所有样品均在冷藏状况下到达检测单位。

4.3.3 质控情况

1、现场质控

为确保采集、运输、贮存过程中的样品质量,本项目的现场采样过程中采集现场质量控制样品,包括现场平行样及运输空白样。

本项目现场质控样包括了2个土壤平行样、1个地下水平行样。其中土壤现场质量控制平行样品信息表及相对偏差结果见表4.3-1,地下水现场质量控制平行样品信息表及相对偏差结果见表4.3-2,底泥现场质量控制平行样品信息表及相对偏差结果见表4.3-3。将现场质量控制平行样品检测结果与相应样品检测结果进行比较分析,得出平行样品的相对偏差。

表 4.3-1 土壤平行样相对偏差汇总分析表

			L	SMW-2/1.5-2	.0m	1	LSMW-0/0-0.2	2m	现场质控	平行样总	符合要
检测因子		检出限	样品检出 浓度	平行样浓 度	相对偏差	样品检出 浓度	平行样浓 度	相对 偏差	要求	数量	求平行 样数量
	铅 Pb	0.1	9.9	9.9	0%	11.5	12.1	2.54%		2	2
	镉 Cd	0.01	0.03	0.02	20.0%	0.07	0.08	6.67%		2	2
	汞 Hg	0.002	0.112	0.098	6.67%	0.279	0.294	2.62%		2	2
金属	砷 As	0.01	14.8	12.2	9.63%	7.40	10.7	18.2%	30%	2	2
(mg/kg)	铜 Cu	1	16	16	0%	18	19	2.70%	30%	2	2
	镍 Ni	3	40	40	0%	22	26	8.33%		2	2
	六价铬 Cr ⁶⁺	0.5	ND	ND	/	ND	ND	/		2	2
	锌	1	48	50	2.04%	59	61	1.67%		2	2
	四氯化碳	1.3	ND	ND	/	ND	ND	/		2	2
	氯仿	1.1	ND	ND	/	ND	ND	/		2	2
	氯甲烷	1.0	ND	ND	/	ND	ND	/		2	2
	1,1-二氯乙烷	1.2	ND	ND	/	ND	ND	/		2	2
	1,2-二氯乙烷	1.3	ND	ND	/	ND	ND	/		2	2
	1,1-二氯乙烯	1.0	ND	ND	/	ND	ND	/		2	2
WOO	顺-1,2-二氯乙烯	1.3	ND	ND	/	ND	ND	/		2	2
VOCs	反-1,2-二氯乙烯	1.4	ND	ND	/	ND	ND	/	50%	2	2
(µg/kg)	二氯甲烷	1.5	ND	ND	/	ND	ND	/		2	2
	1,2-二氯丙烷	1.1	ND	ND	/	ND	ND	/		2	2
	1,1,1,2-四氯乙烷	1.2	ND	ND	/	ND	ND	/		2	2
	1,1,2,2-四氯乙烷	1.2	ND	ND	/	ND	ND	/		2	2
	四氯乙烯	1.4	ND	ND	/	ND	ND	/		2	2
	1,1,1-三氯乙烷	1.3	ND	ND	/	ND	ND	/		2	2
	1,1,2-三氯乙烷	1.2	ND	ND	/	ND	ND	/		2	2

原常州灵塑化工有限公司地块土壤污染状况调查报告

	三氯乙烯	1.2	ND	ND	/	ND	ND	/		2	2
	1,2,3-三氯丙烷	1.2	ND	ND	/	ND	ND	/		2	2
	氯乙烯	1.0	ND	ND	/	ND	ND	/		2	2
	苯	1.9	ND	ND	/	ND	ND	/		2	2
	氯苯	1.2	ND	ND	/	ND	ND	/		2	2
	1,2-二氯苯	1.5	ND	ND	/	ND	ND	/		2	2
	1,4-二氯苯	1.5	ND	ND	/	ND	ND	/		2	2
	乙苯	1.2	ND	ND	/	ND	ND	/		2	2
	苯乙烯	1.1	ND	ND	/	ND	ND	/		2	2
	甲苯	1.3	ND	ND	/	ND	ND	/		2	2
	间二甲苯+对二 甲苯	1.2	ND	ND	/	ND	ND	/		2	2
	邻二甲苯	1.2	ND	ND	/	ND	ND	/		2	2
	硝基苯	0.09	ND	ND	/	ND	ND	/		2	2
	苯胺	0.1	ND	ND	/	ND	ND	/		2	2
	2-氯酚	0.06	ND	ND	/	ND	ND	/		2	2
	苯并[a]蒽	0.1	ND	ND	/	ND	ND	/		2	2
SVOCs	苯并[a]芘	0.1	ND	ND	/	ND	ND	/		2	2
	苯并[b]荧蒽	0.2	ND	ND	/	ND	ND	/	40%	2	2
(mg/kg)	苯并[k]荧蒽	0.1	ND	ND	/	ND	ND	/		2	2
	薜	0.1	ND	ND	/	ND	ND	/		2	2
	二苯并[a, h]蒽	0.1	ND	ND	/	ND	ND	/		2	2
	茚并[1,2,3-cd]芘	0.1	ND	ND	/	ND	ND	/		2	2
	茶	0.09	ND	ND	/	ND	ND	/		2	2
TPH (mg/kg)	石油烃 (C10-C40)	6	20	21	2.44%	47	36	13.3%	40%	2	2

表 4.3-2 地下水平行样相对偏差汇总分析表

検測国子	衣 4.3-2 地下水平行杆相对偏差汇总分析衣							<i></i>	
株 出液度 浓度 傷差 要求 数量 样数量 株数量 未数量 株数量 未数量 未数			检出			11	现场	平行	符合要
(μg/L)			限			' '		· '	
(μg/L)			0.00			偏差	要求		
承 Hg						/			
(μg/L) 神 As 0.12 2.93 2.61 5.78% 何 Cu 0.08 1.19 1.17 0.85% 税 Ni 0.06 0.50 0.49 1.01% 分析格 Cr6+ (mg/L)		•				/			
(μg/L)						/			
(μg/L) 線 Ni	金属								
様 Ni							25%		
(mg/L)	10		0.06	0.50	0.49	1.01%		1	1
 泉甲烷 1.0 ND ND / 泉 乙烯 1.5 ND ND / 泉 乙烯 1.5 ND ND / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.004	ND	ND	/		1	1
(μg/L) - 泉 で焼 1.5 ND ND / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		锌	0.67	2.14	3.18	19.5%		1	1
1,1-二泉乙烯		氯甲烷	1.0	ND	ND	/		1	1
一泉甲烷 1.0 ND ND		氯乙烯	1.5	ND	ND	/		1	1
VOCs (μg/L) 1.2-二泉乙烯 1.1 ND ND / 1 <td></td> <td>1,1-二氯乙烯</td> <td>1.2</td> <td>ND</td> <td>ND</td> <td>/</td> <td></td> <td>1</td> <td>1</td>		1,1-二氯乙烯	1.2	ND	ND	/		1	1
1,1氟乙烷		二氯甲烷	1.0	ND	ND	/		1	1
顺-1, 2-二氯乙烯 1.2 ND ND / 		反-1,2-二氯乙烯	1.1	ND	ND	/		1	1
 銀传 1.4 ND ND 1,1,1-三氟乙烷 1.4 ND ND ND (1) 1 <li< td=""><td></td><td>1,1-二氯乙烷</td><td>1.2</td><td>ND</td><td>ND</td><td>/</td><td></td><td>1</td><td>1</td></li<>		1,1-二氯乙烷	1.2	ND	ND	/		1	1
1,1,1-三氯乙烷		顺-1,2-二氯乙烯	1.2	ND	ND	/		1	1
VOCs (μg/L) 田東化碳 1.5 ND ND / VOCs (μg/L) 1,2-二氟乙烷 1.4 ND ND / 1,2-二氟乙烷 1.2 ND ND / 1,2-二氟丙烷 1.2 ND ND / 甲苯 1.4 ND ND / 四氟乙烯 1.2 ND ND / 四氟乙烯 1.2 ND ND / 1,1,1,2-四氟乙烷 1.5 ND ND / 1,1,1,2,2-四氟乙烷 1.1 ND ND / 1,1,1,2,2-四氟乙烷 1.1 ND ND / 1,1,1,2,2-四氟乙烷 1.1 ND ND / 1,1,2,3-三氟丙烷 1.2 ND <		氯仿	1.4	ND	ND	/		1	1
X		1,1,1-三氯乙烷	1.4	ND	ND	/		1	1
VOCs (μg/L)		四氯化碳	1.5	ND	ND	/		1	1
VOCs (μg/L) 三氯乙烯 1.2 ND ND / 30% 1		苯	1.4	ND	ND	/		1	1
The first color of the first		1,2-二氯乙烷	1.4	ND	ND	/	30%	1	1
(μg/L)	MOG	三氯乙烯	1.2	ND	ND	/		1	1
1.4 ND ND / 1 1 1 1 1 1 1 1 1		1,2-二氯丙烷	1.2	ND	ND	/		1	1
四氯乙烯 1.2 ND ND / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(µg/L)	甲苯	1.4	ND	ND	/		1	1
 ***		1,1,2-三氯乙烷	1.5	ND	ND	/		1	1
1,1,1,2-四氯乙烷		四氯乙烯	1.2	ND	ND	/		1	1
乙苯 0.8 ND ND / 间,对-二甲苯 2.2 ND ND / 邻-二甲苯 1.4 ND ND / 苯乙烯 0.6 ND ND / 1,1,2,2-四氯乙烷 1.1 ND ND / 1,2,3-三氯丙烷 1.2 ND ND / 1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs 硝基苯 1.0 ND ND / (μg/L) 苯胺 1.0 ND ND /		氯苯	1.0	ND	ND	/		1	1
河,对-二甲苯		1,1,1,2-四氯乙烷	1.5	ND	ND	/		1	1
第-二甲苯 1.4 ND ND / 苯乙烯 0.6 ND ND / 1,1,2,2-四氯乙烷 1.1 ND ND / 1,2,3-三氯丙烷 1.2 ND ND / 1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs 硝基苯 1.0 ND ND / (μg/L) 苯胺 1.0 ND ND / 30% 1 1		乙苯	0.8	ND	ND	/		1	1
苯乙烯		间,对-二甲苯	2.2	ND	ND	/		1	1
1,1,2,2-四氯乙烷 1.1 ND ND / 1,2,3-三氯丙烷 1.2 ND ND / 1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs 硝基苯 1.0 ND ND / (μg/L) 苯胺 1.0 ND ND / 30% 1 1		邻-二甲苯	1.4	ND	ND	/		1	1
1,2,3-三氯丙烷 1.2 ND ND / 1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs 硝基苯 1.0 ND ND / (μg/L) 苯胺 1.0 ND ND / 30% 1 1		苯乙烯	0.6	ND	ND	/		1	1
1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs (μg/L) 硝基苯 1.0 ND ND / 1 1 1 1 1		1,1,2,2-四氯乙烷	1.1	ND	ND	/		1	1
1,4-二氯苯 0.8 ND ND / 1,2-二氯苯 0.8 ND ND / SVOCs (μg/L) 硝基苯 1.0 ND ND / 1 1 1 1 1		1,2,3-三氯丙烷	1.2	ND	ND	/		1	1
1,2-二氯苯 0.8 ND ND / 1 1 SVOCs (μg/L) 硝基苯 1.0 ND ND / 1 1 \$\frac{1}{2}\$ (μg/L) 苯胺 1.0 ND ND / 30% 1 1			0.8	ND	ND	/		1	1
(μg/L) 苯胺 1.0 ND ND / 30% 1 1		· · · · · · · · · · · · · · · · · · ·	0.8	ND	ND	/		1	1
(μg/L) 苯胺 1.0 ND ND / 30% 1 1	SVOCs	硝基苯	1.0	ND	ND	/		1	1
		苯胺	1.0	ND	ND	/	30%	1	1
	-	2-氯酚	1.0	ND	ND	/		1	1

	苯并[a]蒽	1.0	ND	ND	/		1	1
	苯并[a]芘	1.0	ND	ND	/		1	1
	苯并[b]荧蒽	1.0	ND	ND	/		1	1
	苯并[k]荧蒽	1.0	ND	ND	/		1	1
	薜	1.0	ND	ND	/		1	1
	二苯并[a, h]蒽	1.0	ND	ND	/		1	1
	茚并[1,2,3-cd]芘	1.0	ND	ND	/		1	1
	萘	1.0	ND	ND	/		1	1
TPH (mg/L)	石油烃 (C10-C40)	0.01	0.33	0.36	4.35%	30%	1	1

由上述汇总表可以看出:

- ①土壤现场质控可以满足规定的 RPD 范围要求。
- ②地下水现场质控满足规定的 RPD 范围要求。

2、实验室质控情况

本次地块土壤污染状况调查采集的所有样品均送江苏秋泓环境 检测有限公司实验室分析, 样品分析质量保证计划还包括:

- ①选择的样品检测单位江苏秋泓环境检测有限公司为专业的环境检测公司,通过了国家 CMA 认证。灌装样品的样品瓶全部由检测单位提供,采用专车运输方式。空样品瓶专室存放,避免与采样无关人员接触,保存时间在规范允许的时间内。
- ②在现场按检测单位分析要求,水样制备一个运输空白样、一个设备空白样、一个全程序空白样,随样品一起运至实验室,只分析挥发性有机物。
- ③检测单位在规范地进行样品检测的同时,按照质量保证与质量控制要求,做了大量的加标回收工作,并将加标回收数据提供给委托单位。本次1个批次的样品检测过程的加标回收率全部达到质控要求。
 - ④在样品检测过程中, 检测单位的样品检测技术人员与现场采样

人员及时沟通。

⑤对检测单位内部质量保证/质量控制数据进行审核和评判。

本项目实验室共分析了15个土壤样品、6个地下水样品。相关 质控结果汇总如下:

地下水:

1、理化项目的质控结果汇总如下: 地下水

	·	
	实际结果	质控要求
方法空白	/	/
有证标准物质	在标准值范围内	在标准值范围内
样品平行样相对偏差	/	/
样品基质加标回收率	/	/
标曲点校核相对误差	/	/

2、VOC 的质控结果汇总如下: 地下水

	实际结果	质控要求	质量样个数
方法空白	小于检出限	小于检出限	1
标曲点校核相对误差	0.28-17.4%	20%	2
样品平行样相对偏差	0.98-2.26%	30%	1
实验室空白加标回收率	85.1-110%	80.0-120%	1
样品基质加标回收率	82.8-116%	60.0-130%	1

3、SVOC的质控结果汇总如下: 地下水

	实际结果	质控要求	质量样个数
方法空白	小于检出限	小于检出限	1
标曲点校核相对误差	0.78-18.6%	20%	2
样品平行样相对偏差	0.25-13.8%	30%	1
实验室空白加标回收率	45.8-89.5%	40-130%	1

4、石油烃(C10-C40)的质控结果汇总如下: 地下水

	实际结果	质控要求
方法空白	小于检出限	小于检出限
标曲点校核相对误差	7.77-7.90%	20%
实验室空白加标回收率	71.5%	70-120%

5、金属的质控结果汇总如下: 地下水

	实际结果	质控要求
方法空白	小于检出限	小于检出限
有证标准物质	在标准值范围内	在标准值范围内
样品平行样相对偏差	1.81-18.3%	20%
	04	

标曲点校核相对误差	0.31-9.33%	30%
样品基质加标回收率	70.8-122%	70-130%
实验室空白加标回收率	84.7-101%	80-120%

土样:

1、理化项目的质控结果汇总如下: 土样

	实际结果	质控要求
方法空白	/	/
有证标准物质	在标准值范围内	在标准值范围内
样品平行样相对偏差	/	允许差值 0.3 个 pH 单位
样品基质加标回收率	/	/
标曲点校核相对误差	/	/

2、VOC的质控结果汇总如下: 土样

	实际结果	质控要求	质量样个数
方法空白	小于检出限	小于检出限	1
标曲点校核相对误差	0.32-15.2%	20%	2
样品平行样相对偏差	0.07-1.01%	25%	1
样品基质加标回收率	85.4109%	70-130%	1

3、SVOC的质控结果汇总如下: 土样

	实际结果	质控要求	质量样个数
方法空白	小于检出限	小于检出限	1
标曲点校核相对误差	0.08-21.6%	30%	2
样品平行样相对偏差	6.44-17.8%	40%	1
样品基质加标回收率	44.3-73.3%	40-130%	1

4、金属的质控结果汇总如下: 土样

	实际结果	质控要求
方法空白	小于检出限	小于检出限
有证标准物质	在标准值范围内	在标准值范围内
样品平行样相对偏差	0.00-9.21%	20%
标曲点校核相对误差	0.55-7.38%	10%
样品基质加标回收率	108%	70-130%

5、石油烃(C10-C40)的质控结果汇总如下: 土样

	实际结果	质控要求
方法空白	小于检出限	小于检出限
样品平行样相对偏差	0.00%	25%
标曲点校核相对误差	3.47-6.13%	10%
样品基质加标回收率	69.2%	50-140%
实验室空白加标回收率	75.5%	70-120%

综上, 检测结果可信, 质控合理, 质控的结果均在要求范围之内。

5 调查结果分析

5.1 分析检测结果

5.1.1 评价标准

原常州灵塑化工有限公司地块目前仍从事工业生产,因此本次调查参考《土壤环境质量建设用地土壤污染风险管控标准》第二类标准进行评价,包括了表1中的全部45项因子和表2中的相关特征因子。锌参考《深圳市建设用地土壤污染风险筛选值和管制值》(DB4403/T-2020)表2第二类用地标准进行评价。

由于周边地表水体执行IV类标准,因此地下水评价标准执行《地下水质量标准》(GB/T 14848-2017)中IV类水标准。其中石油烃(C10-C40)标准参考沪环土[2020]62 号-上海市生态环境局关于印发《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的通知中的相关标准。

各标准的评价标准指标具体如下。

表 5.1-1 土壤各评价标准指标 (仅列出检出因子, 单位: mg/kg)

检出因子	《建设用地土壤污染风险管控标准》 第二类用地筛选值标准
 铅	800
 镉	65
 汞	38
砷	60
铜	18000
镍	900
苯并[a]蒽	15
蓝	1293
苯并[b]荧蒽	15
苯并[k]荧蒽	151

苯并[a]芘	1.5
茚并[1,2,3-cd]芘	15
石油烃 (C ₁₀ -C ₄₀)	4500
检出因子	《深圳市建设用地土壤污染风险筛选值和管制值》 第二类用地筛选值标准
锌	10000

表 5.1-2 地下水各评价标准指标 (仅列出检出因子,单位: µg/L)

检测项目	《地下水质量标准》(GB/T 14848-2017)中IV类水标准
pH 值	$5.5 \le \mathrm{pH} \le 9.0$
镍	100
铜	1500
种	50
镉	5
铅	100
锌	5000
石油烃(C ₁₀ -C ₄₀)	1200*
1,2-二氯乙烷	40

5.1.2 土壤调查数据总述

本地块内土壤样品总量合计为13个(含1个土壤平行样,不含对照点及对照点平行样)。污染物检出范围见表5.1-3。

表 5.1-3 地块内土壤检出因子浓度范围 (mg/kg)

区域	本地块检出 因子	本地块土壤 浓度范围	样品总 数(含平 行样)	检出 样品 个数	检出率	《建设用地土 壤污染风险管 控标准》第二类 用地标准(筛选 值)
- v	pH 值 (无量纲)	7.55~8.70	13	13	100%	/
原常 州灵	铅	7.2~16.8	13	13	100%	800
塑化	镉	0.02~0.05	13	13	100%	65
工有	汞	0.028~0.499	13	13	100%	38
限公	砷	8.92~18.2	13	13	100%	60
司地	铜	13~19	13	13	100%	18000
块	镍	25~40	13	13	100%	900
	锌	37~64	13	13	100%	10000*

苯并[a]蒽	ND~0.4	13	2	15.4%	15
薜	ND~0.3	13	1	7.69%	1293
苯并[b]荧蒽	ND~0.3	13	1	7.69%	15
苯并[k]荧蒽	ND~0.2	13	1	7.69%	151
苯并[a]芘	ND~0.1	13	1	7.69%	1.5
茚并 [1,2,3-cd]芘	ND~0.2	13	1	7.69%	15
石油烃 (C10-C40)	20~60	13	13	100%	4500

注: "*"标准参考《深圳市建设用地土壤污染风险筛选值和管制值》 (DB4403/T-2020)表 2 第二类用地标准。

由上表可以看出,原常州灵塑化工有限公司地块土壤检出数据均低于《建设用地土壤污染风险管控标准》第二类用地筛选值标准,锌检出数据均低于《深圳市建设用地土壤污染风险筛选值和管制值》第二类用地筛选值标准,无超标点位,无超标数据。

5.1.3 地下水调查数据总述

本地块内地下水样品检测量为 4 个(不含对照点及对照点平行样)。污染物检出范围见表 5.1-4:

表 5.1-4 地块内地下水检出因子浓度范围 (单位: μg/L, 仅列出检出因子)

区域	本地块检出 因子	本地块地下水浓度范围	样品不点 对照对对 及对形 人工 人工 人工 人工 人工 人工 人工 人工 人工 人工 人工 人工 人工	检出样 品个数	检出 率	《地下水质 量标准》中 IV类水标准
原州塑工限司块	pH 值 (无量纲)	6.9~7.3	4	4	/	5.5 ≤ pH ≤ 9.0
	镍	2.52~17.4	4	4	100%	100
	铜	0.58~1.09	4	4	100%	1500
	砷	1.05~9.11	4	4	100%	50
	镉	ND~1.78	4	2	50%	5
	铅	ND~0.48	4	1	25%	100
	锌	3.80~52.4	4	4	100%	/

原常州灵塑化工有限公司地块土壤污染状况调查报告

1,2-二氯乙烷	ND~30.7	4	1	25%	40
石油烃 (C ₁₀ -C ₄₀)	260~720	4	4	100%	1200*

注: "*"标准参考沪环土[2020]62 号-上海市生态环境局关于印发《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的通知中的相关标准。

由上表可以看出,原常州灵塑化工有限公司地块地下水检出数据均低于《地下水质量标准》(GB/T 14848-2017)中 IV 类标准,石油烃(C10-C40)检出浓度低于《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的第二类用地筛选值标准,无超标点位,无超标数据。

5.1.4 对照点检测情况

本次调查在地块北侧采集了1个土壤对照样,在地块南侧采集了1个地下水对照样,对照点各因子检出数据与本地块各因子检出数据对比情况汇总如下:

表 5.1-5 地块内检出因子与对照点检出因子对比汇总表 (仅列出检出因子)

地块名称	本地块土壤 检出因子	本地块土壤 浓度范围	对照点及其 平行样浓度 范围	《建设用地土壤 污染风险管控标 准》第二类用地标 准 (筛选值)	本地块地下水检出 因子	本地块地下水浓度范围	对照点及 其平行样 浓度范围	《地下水质量标准》 中IV类水标准
		单位: mg/kg			单位: μg/L			
原州塑工限司块常灵化有公地块	铅	7.2~16.8	11.5~12.1	800	pH 值	6.9~7.3	7.5	$5.5 \le pH \le 9.0$
	镉	0.02~0.05	0.07~0.08	65	镍	2.52~17.4	0.49~0.50	100
	汞	0.028~0.499	0.279~0.294	38	铜	0.58~1.09	1.17~1.19	1500
	砷	8.92~18.2	7.40~10.7	60	砷	1.05~9.11	2.61~2.93	50
	铜	13~19	18~19	18000	镉	ND~1.78	ND	5
	镍	25~40	22~26	900	铅	ND~0.48	ND	100
	锌	37~64	59~61	/	锌	3.80~52.4	2.14~3.18	/
	石油烃 (C ₁₀ -C ₄₀)	20~60	36~47	4500	1,2-二氯乙烷	ND~30.7	ND	40
	/	/	/	/	石油烃(C ₁₀ -C ₄₀)	260~720	330~360	1200*

由上表可以看出, 本地块土壤、地下水中各检出因子浓度与对照点浓度相比基本一致。

5.2 结果分析和评价

原常州灵塑化工有限公司地块位于常州市武进区前黄镇灵台村, 企业成立于1987年,占地面积约为2209m²,本次布设4个水土复合 井(6m),1个土壤对照点,1个地下水对照点。

1、土壤

本次土壤污染状况调查共布设 4 个水土复合井, 1 个土壤对照点位, 共采集 39 个土壤样品(含 2 个平行样、1 个对照样);送检 15 个土壤样品,分析检测 15 个土壤样品。共检测土壤指标 48 种,检出土壤污染物 8 种(不含 pH),污染物检出率 16.7%;土壤检出数据均低于《建设用地土壤污染风险管控标准》第二类用地筛选值标准,锌检出数据均低于《深圳市建设用地土壤污染风险筛选值和管制值》第二类用地筛选值标准,无超标点位,无超标数据。

2、地下水

本次土壤污染状况调查共布设 4 个水土复合井, 采集 6 个地下水样品(含 1 个平行样, 1 个对照样), 共送检分析 6 个样品。共检测地下水指标 48 种, 检出地下水污染物 8 种(不含 pH), 污染物检出率 16.7%; 地下水检出数据均低于《地下水质量标准》(GB/T 14848-2017)中 IV 类标准, 石油烃(C₁₀-C₄₀)检出浓度低于《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的第二类用地筛选值标准, 无超标点位, 无超标数据。

5.3 不确定性分析

本报告结果是基于现场采样点位的调查和监测的结果,依据目前可获得的调查事实而作出的专业判断。本次土壤污染状况调查仅供改变该地块历史用途之前对土壤、地下水环境进行摸底调查与初步了解,由于土壤的异质性以及污染分布的不均匀性,本次调查所采集的样品和分析数据不一定能代表地块内的极端情况。本次调查缺少地块长期的历史监测资料,无法分析地块及其周边污染物的历史污染情况和污染变化迁移趋势,此次监测结果仅代表调查期间情况。

本报告所得出的结论是基于该地块现有条件和现有评估依据,本次地块调查完成后地块发生变化,或评估依据的变更会带来本报告结论的不确定性。

6 结论和建议

6.1 结论

从土壤污染状况调查结果分析,本地块内土壤检出数据均低于《土壤环境质量建设用地土壤污染风险管控标准》第二类用地筛选值标准,锌检出数据均低于《深圳市建设用地土壤污染风险筛选值和管制值》第二类用地筛选值标准。地下水检出数据均低于《地下水质量标准》中IV类水标准和《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》的第二类用地筛选值标准。

综上, 本地块能满足二类用地要求。

6.2 建议

针对在后续的开发过程中,提出以下几点建议:

- (1) 由于调查过程中存在不确定性,因此建设单位开发过程中若发现土壤、地下水有疑似污染迹象,应停止开发,开展地块详细调查和风险评估工作。
- (2)建设单位重视开发过程中的环境保护工作,做好土壤、地下水、扬尘及噪声等污染防治措施,防止二次污染。
- (3) 本地块后续转让时, 应根据转让时规划的土地利用要求重新进行土壤污染状况调查。

7 附件

附件1:现场作业照片

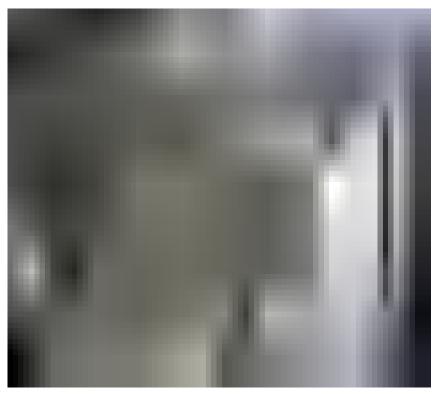
附件2: 访谈记录表

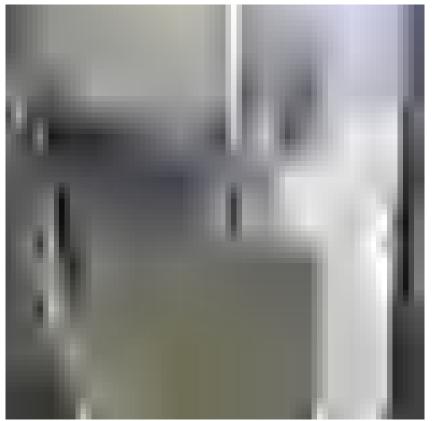
附件3: 土壤钻孔记录单

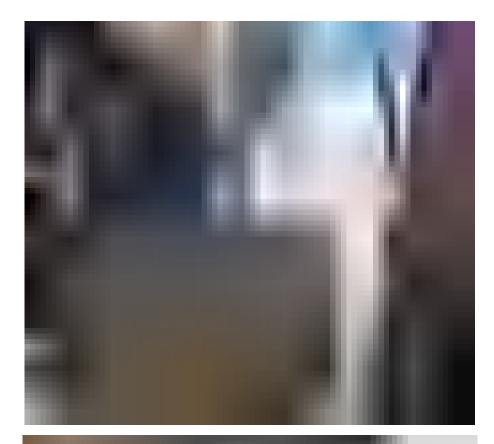
附件 4: 成井记录单

附件5:成井、采样前洗井记录单

附件 6: 土壤筛分记录单

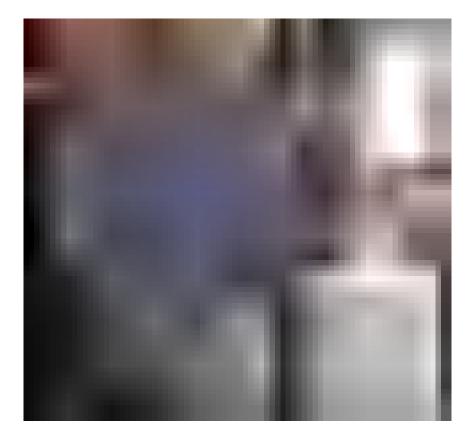

附件7: 土壤、地下水采样记录单


附件8: 现场采样服务工作量确认单


附件9: 检测报告

附件 10: 检测资质证书、检测能力表

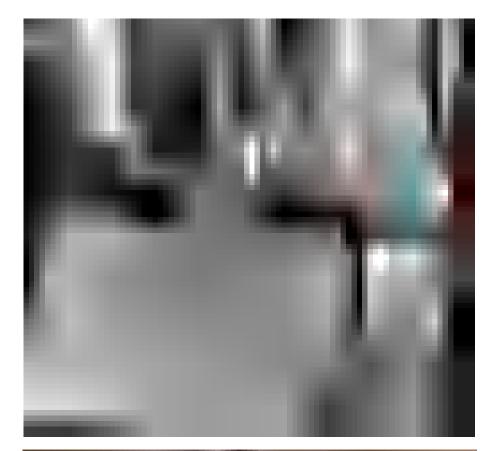
附件 现场作业照片 LSMW-1 6m 水土复合井





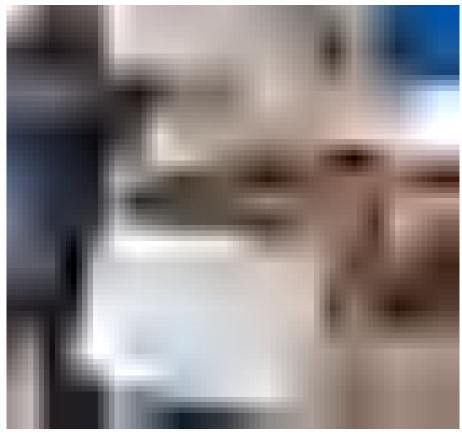
LSMW-2 6m 水土复合井

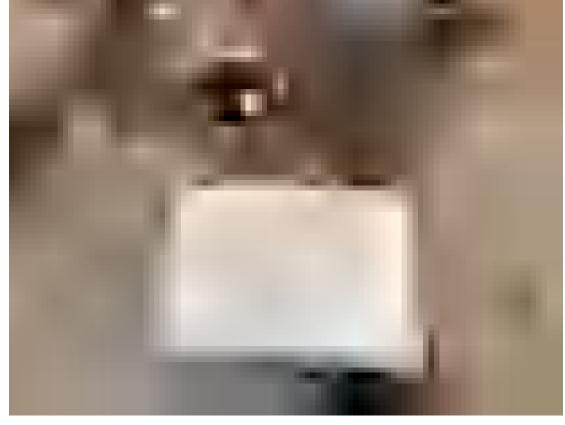




YZMW-3 6m 水土复合井

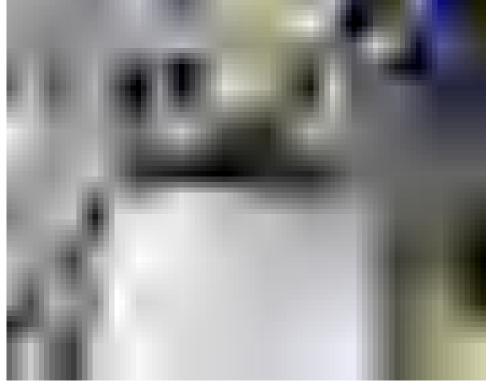


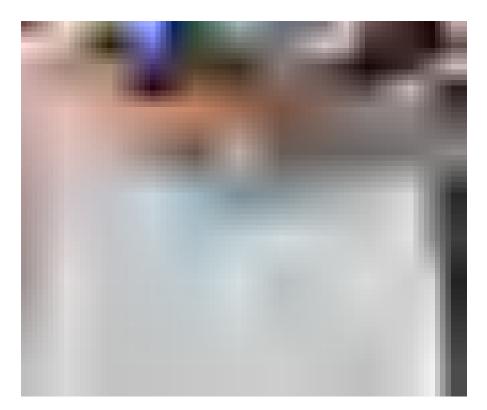


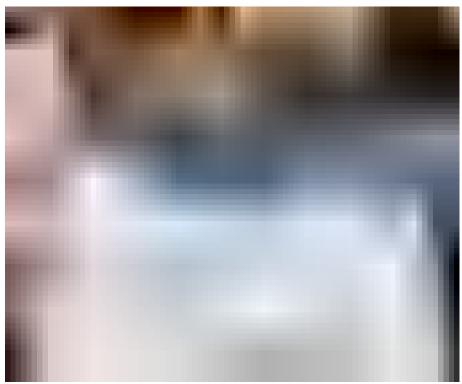


YZMW-4 6m 水土复合井

现场土壤筛分

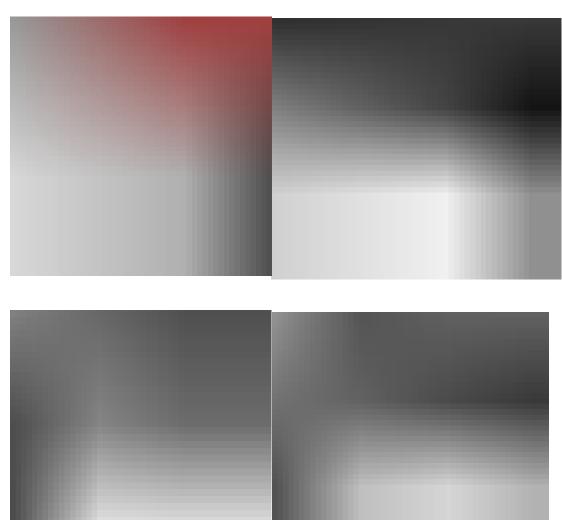

LSMZ-1 PID 及 XRF 筛分:



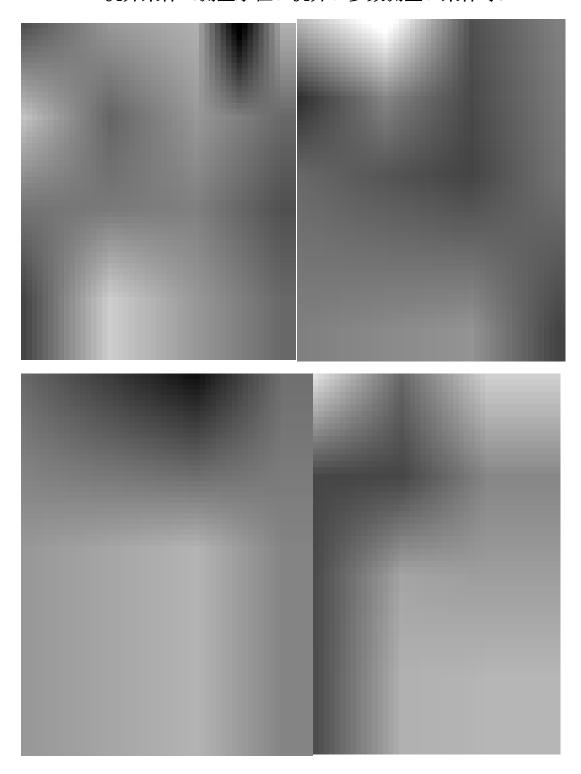

LSMZ-2 PID 及 XRF 筛分:

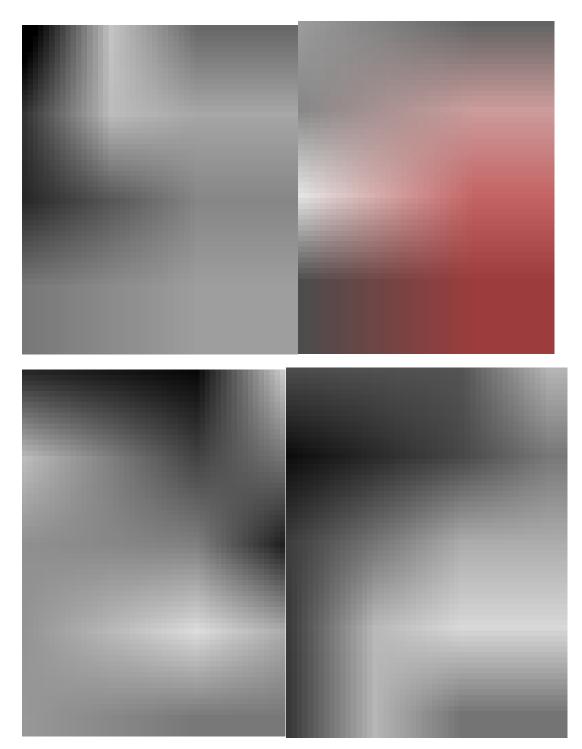


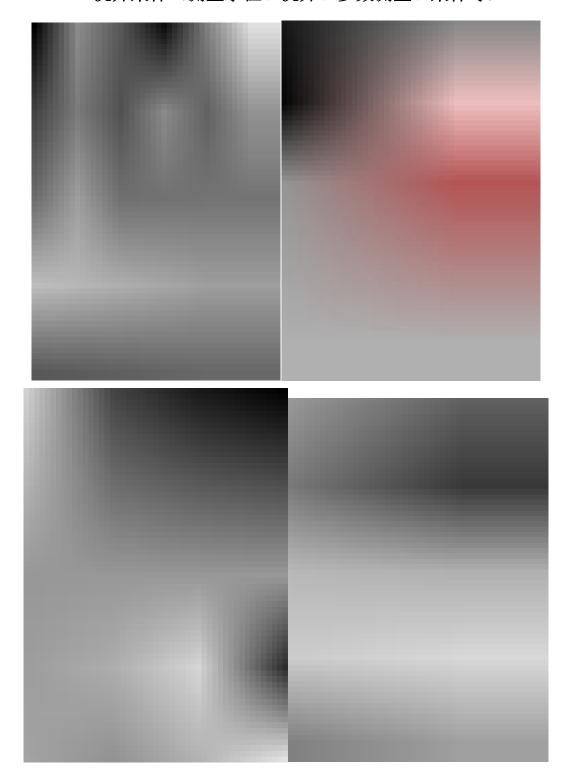
LSMZ-3 PID 及 XRF 筛分:

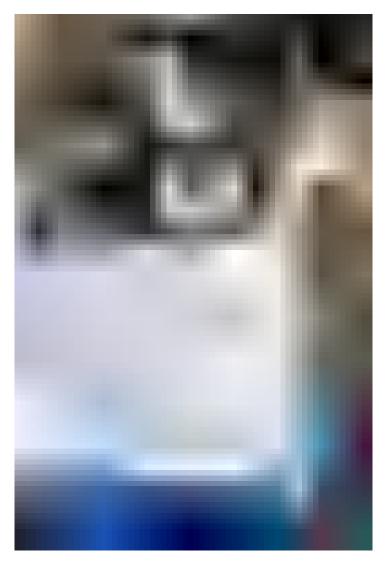


LSMZ-4 PID 及 XRF 筛分:




LSMW-1 洗井采样(测量水位、洗井、参数测量、采样等)


LSMW-2 洗井采样(测量水位、洗井、参数测量、采样等)


LSMW-3 洗井采样(测量水位、洗井、参数测量、采样等)

LSMW-4 洗井采样(测量水位、洗井、参数测量、采样等)

LSMW-0 对照点采样

	ENT FIRE	 17.0
		Willer Sala
Total I		

Ľ

The same of the same and the same of the s Commission of Authority of Authority and Authority and Authority Print, 19 mantent. Commentent filt. designations are sent address services. Parent and Assess Physical Interfer ATT BEFORE

200			3	- 47-men	
31.12				- aproximate	
		Man Printer			OF THE REAL
No. of the last					

はるか せいかん = profession as each terminal AMMADE AND A SEC.

200 W

I
۰
T
7

	20 NOW 70	TO THE PARTY AND	
The latest and the la			

And Provided Base Control of the Con

113

Section .

...

Market Way. 1		FINCES.

Para Sanday

.....

生性毒素 医电视电路

and Marie 19, 1 in which	
PART CHARLES	
STORES AND ADDRESS OF THE RESE	
NAME OF TAXABLE PARTY.	一 利益 (利力)
Martin Salah Salah Salah	
15-1-184 2	
-11-12 B. B.	and the second second
10 N 100 100 1	The second secon
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
100	
e manadil .	
a stylen.	
A BANK OF BANK AND A SECOND CO.	
그 보기 때	
	and the second
	-
	L .

	Mr.		10.00	"\ : ^
	III _{NIA}		<u> </u>	
	1 411	10 A		
< P	13	1 mage	а	
• 3	866	44 444 1,0452 1,0452	r	
	+ 4		•	

	- 1	6
		u .
14 Luck		_
Market BA, 411 Market Lauf Ba Market Lauf Ba	•	
	± -	-

海外的用户公司人

RELEASE DE LOS		
	n	

建甲基胺基

deed	4442	51.N.S.	4.0	1.364	34 M.	
a Bitage		Views 1	_	2 -	Ph	All acc
88F-		***		L		-22
THE STATE OF					11212	40
glada [10,000,000,000					
-1. 1	٠.	dis.	•			
	• •					
						-
,.				1		1
861885		1		1		
BAB 57			- 1			
0 m 10 m						
if dead -		4	10	Se a		
redege				Pro-		
100						
4			3	411-	440	
	ľ.		٠	141	ψī.	
n me Z	1			4	A	

والطنوال الم

1868	MEN Y	dar	Tiple.	-è-d	i gala	
1878-	1001	***		į,	116	10 mm
90.07		77		•		Ner
bris -	••	1.			81.582	•••
11013		4	٠		e de la composition della comp	
1-19 4	"	-		1	REY	• •
801 084						
F1 8 191						
	-					
10000		_	- 111	1 1	U -	
				h		
	ír.	n. 111	# 1 1	١.	æ	
• • • • • • • • • • • • • • • • • • •	1		-11		2,50	1 /4

化基金属金

10.0	中国など	to the Circ	duf all	(1.4)	
PRI LINA		-	17	- 16	int.
61.77	 -	19.81	u	****	-570
	l·	11/7	F		100
-10-0	1g s	121.0	.484	and of	
FFF .		L			

51.0.09					
BP- BPB- BP			1	-	
. IFF88 -			- 44 -		
.18844	/		je s		
H-q · ·		- 1-1		44q.	
A - 4		-	-1	_ •	

线电视电路

A 10 .	Allert Anna Contractor
anngs .	
2025	man and a track and
	A 1877 BB
diete	at 78 (2.15
	F = B = B = B = B = B = B = B = B = B =
ratio	

005 FF	
	res le
_	
and the control of	
	h
	The section was a party.
Bet and	1752 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ा ≅ चर्च	Marian F and the

7					
	2.				
1	į,			П	П
	1 1			Н	
	1		Ш		
	4 j				
١.	. 1	T	ш		T

	: [1	17.0
- - - -	The state of the s		£.	
100				
27.64		: ::::		

有有法 人名西阿伊一姆

	1000
1175	
1,612.06	

.

1		6.00	
4	>		
- Carrie			

£

	Total Annual Section 1			111		The state of the s	Ē			
--	------------------------	--	--	-----	--	--	---	--	--	--

-
_

				Ī				Ì	
	r	:	1	 1					
			111		; ;				
	•		7		+	1			

.

Γ	

1	l	l		l	ı	l	ı	l		4
	=		1	1						37
			21	٠,		L	į	-	,	Т
A STATE OF THE PARTY OF THE PAR					:	:	١,			П
	i	i		Ī	i	•		:		T
****			Ė	Ē	•			ŀ		Г
1.41 5.7	:	ę		į	4	H	ì	I	1	
•	ŀ	1	3		ļ.					
Manne 418.44		1	ŀ	ĺ	5	ŀ	l	l		ı
Part 11 1151		Ę	=	=	:					T
17111										Ī
:	i	Ē	3	1	:	i	:	:	:	т
	l		İ	ŀ	Ī					T
	Ŀ	ŀ	Ė	Ī	ŀ	I	Ī	İ		Т
		ŀ	H	ŀ		ŀ		į.		Т
	•		ì	-		-		=	T.Ple	Г
	2				:				10.44	Т
		-	:	:						r

ķ

. .

		4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		118 1. The same of the same of	*								7.7		5.75 I
--	--	---	--	--	---	--	--	--	--	--	--	--	-----	--	--------

1.6	1 1	

						100		
					75	ŀ	Ш	H
1	Ш				Š	ŀ		
		#1	П	t	į		H	Ħ
1			ı.	Н	į	ŀ	I	
3			N	Н	15		H	П
2 3	H		E		ŧ	H	H	H
		3	į		Ē,	Ħ.	Ħ	
É		Ш	H	H	1:	Ī.		
		1	-		21	T	Ħ	Ħ
		44			i .		H	H
1,11					71			

		9			Physical Physics Company of the Comp				The second secon				
--	--	---	--	--	--	--	--	--	--	--	--	--	--

귂 Ŧ : ŗ

did in community by the high

:			1	:				
:			ī			::		
ŧ	ш	ш	þ		À	Ġ	10.13	ŧ
:	•						7	
	>			•	Ŀ	:	97 B	ż
i	-	ш		*	ì		÷	
i	1	_		i	:		ī	
E	1						111	1
:	ı			_			÷	
 :	:			:		:	-	ŧ
		•	ì	1		٠.	2. 2.	ŗ

1

5

L

j

5

•

. [

F

:

Ī

J J

ı

٦

Ę

J

J

J

J

þ

þ

þ

1 3 1 3 2 3 3 3		日本公
: :		
		- 1
	÷	WIN YE
7 · · · · · · · · ·		į.
2 4 2	:	1 1 1
	2	Ą

40.00		
	, :	
		4. 4
Y 1 2 3		-
: # 1 5		
5 2 1 1	4.04	į
b , ,		
2 6 2 3		12
	4	11.00
* * * * * * * * * * * * * * * * * * * *	:	≘
- 6 0		7

-
4
Ţ
_

			Ŀ					
		11	100 144					
			± %					
			1 2 2					1
5	:	 ; ;						

	•		
		ľ	
1	_	1	
!			
			ŀ
ļ	1		L
		1	þ

7.4	1000		1	ji jir	Н	년 13	51 21	: j : i	id id	: Ē	Н
į	:	j.		H	H	H		H	H		ŀ
П	Ī	ij,			>	>	7	٧	>	>	
		ļ:	П	>	П			П		П	
Н		37						П		П	П
											Е
u	1	3.		۰	H	٠	٠	٠	٠	H	H
3	1		i	Ш	,	\	\	Ш	\	\	H
ŧ	ļ	i	ï	\		\	\	Ш	\	\	L
i		!				·		·		.:	
		j:	i	•	i						
		ş		٠		1	i	1	5	Í	ľ

		9	111111111111111111111111111111111111111	ŗį.			ij	2	. !	1
11 1: [2]		7	7	۷	7	7	`			
	7									
(i)		\	\	\	\	\	•	Ì		
1				· • :	•		: - 1		12	
je j	- 1	!	75	ŧ	į	Į į				

1001	; F		a a		.1	.i	1 101	F	.1 .ii	, i	, ! , !	1 1 1
141												F
		7	7	7	>	>	7	7				ŀ
-1 -1		7		,								
	i	\	\	\		\	\	\				
ī.					- :						: 1	
ř	7	1	1	i	ī	ï	I	ł	П	П	П	

.

)	7	>							
			,	7	١	>			
1									
	\	\	\	• \	\	•			T
		٠	٠				Ц		
	::	-:		ı.e	. :	1 =	 	= 1	11
ī			J			Į,			

8011	1	ji id	; <u>:</u> 11	: 1	; J	1	;] ; i	; <u>i</u>	, l	,1	. i	
	::	16	ä	ï	12	::			14	31	ü	
ļi						ľ					ī	
!!!			.}			>	4					
ļŗ		>	П				ľ					
8			Н			П						t
												Ė
ü		٠	Ξ			-		٠				
ř.			-	\	\	\	\	\				
i l	à	Н	Η									
u	: 1	П				П			П		П	
[. :			1=	: 1	,,	<u>.</u> .		12	
ţ,	7		-	-								
h.,	4				4		Ļ	4	П			
1	1	i	?	1	1	ĩ	Ш	3				

!	15	-	ıi ii	; a	. i	: 1						ا _ب ا ا ب ا
						t	h	t	t	t		H
ř.			7	>	>	>	7		>	Ε		H
Ė:		7					П		П		Т	Т
:					П		Ħ	Ħ	Ħ	Ħ	Ħ	t
	Ħ					Ħ	Ħ		Ħ	Ħ	1	Ħ
П	П	٦	~		٠	Ŀ	Ŀ	Ŀ	Ħ	Ħ	Ħ	Ħ
·	L	١	\	\	\	\	\	\				Ш
į			\	\	\	\	\	\		Е	П	
- 1			П			П	П	Т	П	Т	Т	Т
			::	12	::	: 1	: 1				15	
3	ŧ	П					ī		Ī		П	Ħ
+		1			÷	2	7	3	H		H	H
4	ш	ı	4	1		í	7	į	H		H	ł

L

j	- 10 - E	;; :1			1111	11	ļļ ļi		, l : i		. i	. l . i
1:	71	-	1 6	ч	; '	41	11	-		3:	- 1	15
1.						Г				П		
şi"	- 1		7	7	7	7	7	7	П			П
hin		7	П	П	П	П						
			Н	П					т			
	ì	-		1	٠	٠	٠	•				
1	i		\	\	\	\	\	\				
ž	9											
] =			П					П			П
		::	: :		١:	: 1	- 1	ш	: •		17	d
į2	:		П	П	П				.		1	1
	:	*	3				H	1		+	+	
		Å	Ξ	1	ij	Ы	÷	1				

	13	2 L	11	ıĒ	:1 !!	: 1	: [:]	;:4 1:3		1!	i
51		Ħ				H		H		H	t
; 17	I		7	7	7	7	7	>	П	Ħ	İ
Į,		7	П	П	П		П				П
27											
	ì										E
		\	\	\	\	\	·	\			t
į	i		\	\	\	\	\	\			
			ij								h
5		::	::	::	= =	: 1	1:	: 1	15	21	ı
je	- E								4.0		
!	!	i	ì	i	1	į	ï	ſ	Ħ		

1	2. 2.	1	1111	11.11	WIII	11	11	i		. F	=
±:	Ė				-		"	•	11	E	1:
ii'		1	7	7	7	7	4	1			Г
is"	7										
2.							#	+			
-					-			1		Ξ	
•	\	\	١	\	\	\	\				
1	Ш		4	٠	\		4	ļ	Ц		
E 13											
jı ;	= =		::	Ħ		-:	: 1 :	1		i	7.1
	2	į	í	÷	1	+	1	+	+	Н	

i	į	ان إ: ان	100			ii 11 21	1 101 1]; :i :i	: 1		اء انا انا	, l (ii (i)
21 E.	4									H	H	H
; (**	t		7	7	7	7	2	7		H		H
Ēŗ'	Ī	7	П	П	П	Ī	П				П	ľ
3 7	I											
	+											
ĝ				\		\	\	1				
								\				
:	-					П	H	П				
	! =	:	: : :	::	: 1	1=	11	::	1.1	17	٠.	П
44	ξ.					U	Ц					
F	1	l	į.	i	į	Ĭ	Ţ	÷	П		П	

•
7
5
7

5 . i	, i <u>. !</u> , l , i . i . i , i . : . :		111
	7		
i.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5		::::::::	

	Prings Orbits	
	. In	
		\
,	, , , ,	. 1

4 ±

T

T	INCAS DEPARTMENT	L.
-		1
: 3		
; ř	-	
? !		
d		
i		1 1
Ī	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	
	= =	
ij	Ī	
.		1 :
	i i i i i	

Ē

-

į

1

\

١

_

Andreales.

1

4

47.66

E

i

-

1

1

l

\

1

A

4

Ę

Ξ

F

-

'n

不 医电子可用电电话记录器

		à,			\			\					
		1	1			1	1	1				Ŋ.	
!		1.5			\	1		1		i		1	
		þ					\	1				Ė	
	 	: :			1	\	\	\				E	1
		4						,				ŧ.	i
		14					·	\					
		٠.										1	
	i	÷ •						×				į.	
		, ; F	halida w		(Application)	215.0	2/14/90	VITT OF THE	,		į		-01
		į :	H				Ī	•			-	180	ļ,
	ı	1		\	\	\					ì	ij	ľ
	·	••			\	\	\				i	ı	
	3	١,	4		ł	1	i	ſ	3	7	ŝ	H	:

ŀ

1

1

\

١

L

\ •

1-11/0-01/2

1 11

٦

ķ

Tale of

i

17179114

1

7

4

3

3

£

4

:

;

4

1

1

1

E

1

111

=

	ı			
_				
L				
i	i			
	ı			
ŀ				
•				
b				
	ĺ			
			,	i

	Į,		K. Tib. p					1	\			La 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
7 ::		2 11 11							\ \				1.41
		í		ш					_		5		10 and 10
-		A-1 844	1								1 1 1 1		7
:	7 7	í	i	i	ŕ	1	: 1	7 5	é Į	÷			

|-|-

-

:			H	Н	H		\	\	\		l	ы	;
71		:-									Ħ		
							42.04			T 100			
		ŧ	į							Ì		4.0	t
٠	•	:			\		\		\		Π	:	E:
:	3	į	į	1	N.	1 1	:	4	21.4	1		i	1

1

١

1

1

i

i

;

0.0		10 % L 1 10 M.	14	
9 Held 9 Held 9 A 9	MARK AND	Aprilla Sa Calba Sa	4.4	di.
			→ •	-
116-		* (B) (1		•
11 1	P	* 15-1 * 11-15-1		
		•		
				-
,===		1-1		
87	194 5	- e-de-e	1999 /	•7
* 	ed, of			

检

测

报

告

HEL USAN

- - - - - - - - - - - 号

er av ingenske kilendig.

abru. qi,na

。 医复数多数甲酰甲基乙醇 1980年1988年1988年1988年1988

M 00 333 (3 3 0

- 1 - - - - - - - - - - -

Libébén

| k.k = | |
|-------------------------|--|
| 1 | |
| 1410 3 <u>-</u> 10 01 1 | |
| | |
| · · B | |
| | |
| | |
| man <u>-1</u> | |
| 一数大名 | |
| # Ad- | Sec. 1 |
| 34 | To the second se |
| P 28 ye | 19 - 1 8 |

. . . .

| | | * 61 | | | | | |
|------|------|--------|-----|----------|------|--------|--------|
| | | | 4 | .E. | 7 | 188.1 | === |
| | | | - | +,+ | | -,- | 7 10 1 |
| 484- | .4. | 41 | | T | mar. | - | 4.4 |
| | | - 44 | • | 42.3 | | minut. | ш. |
| | | • | -44 | | - F | | |
| | | ш | | | - 1 | | |
| 46 | | - | • | 100 | - 00 | - | - |
| - | | - | | - | - | | - |
| | | | | - | - | | |
| - | _ | - | | _ | | _ | - |
| - | | _ | 1 | | 7.5 | 1. | |
| • | 4.6. | | v | | _ | - | •• |
| *- | | ₩. | • | | 1111 | - | II. |
| | 441 | 77 | _ | | | | - 1 |
| | | 915 | | - | | | 47 |
| | | | | | | | |
| | | •• • • | - | | • | | |

. . . .

| Mary - 1 | | -1 | | | | | 1 | |
|----------|-----------------|----------|----------|--------|-------|------------------|------|--|
| | | and b | | | 127, | | 79.0 | |
| | | - | - | | 1 4 1 | 70,51 | -,51 | |
| | | - | + | ~ | | | | |
| | | | | G. 2.2 | | 3 - 20 to | | |
| | | 78 | | | 100 | | | |
| _ | | - | _ | | | 116 | | |
| 198 | | - | - | | _ | 100 | | |
| | 7571 | - | | | 16 | - | | |
| 4 | | 804 | ٠ | | - 4 | - | - | |
| | | * | | - | - | | - | |
| | 7771 | - | 1. | | | | | |
| | | 144 | | | _ | - | • | |
| - 11 | | - | - | - | | | - | |
| | | + | - | _ | | - | | |
| | | 915 | | | 27 | • | 21 | |
| 11 | - · | :: : | | :::= | | | | |

| 414. | | | ■■号 | | | E | |
|---------|----------|-------------|-----|---------|--------|-------|-----|
| | | 6148 | | 1772 | =: | 1000 | 27, |
| | | | | 7.7 | 7 (7 8 | | |
| hidder. | | - Art | • | error . | 4.4 | | |
| | | - | | 80.00 | | Beate | |
| | | - | | | _ | 49 | |
| | | + | | | - | | |
| | | 94 | •• | - | 240 | | |
| • | -4- | | | | - | 16 | |
| | 100 | _ | • | - | - | - | |
| - | | MA. | | | | - | |
| | 8.4 | | | - | - | - | |
| | T | - | | 16 | _ | - | |
| 1.0 | | ~ | | 175 | 104 | - | 1 = |
| | 4-01 | _ | _ | | | | |
| · · | _ | ιп. | • | 21 | | 22 | 22 |
| | | | | | | | |
| - 1- | _ | | | | | | |

4 - - -

| L.L | | | | | - 1 | |
|-----|------|---------------|-----|---------------------|------------|-----|
| | | | - | (PACIFIC | 77.7 | 177 |
| | | - | - | $\tau = \tau \cdot$ | | |
| 4- | | - | - | | | - |
| | | - | - | FF 1 | Born Lands | м |
| | | ш | +++ | | 447 | |
| - | | -4- | | | - 16 | _ |
| | | ** | - | - | 140 | w |
| - | 74.0 | \rightarrow | | | - | 15 |
| • | 1000 | _ | ٠ | | | |
| - | | - | | | | |
| • | 768. | <u> </u> | | | ••• | 7.2 |
| ٠, | | ш. | ••• | - | _ | - |
| • • | | ~ | | | 1 | • |
| • | | - | - | | | 1 |
| | - | ŦΙ | ٠ | 43 | | - |
| | | | | | | |
| | | | | | | |

* 4 4 2

| 170 000 | - 4 | F11. | - 1 | | | | |
|----------|------|------|-----|------|-------|-------|------|
| | | | FI | 127. | P49 - | 18.81 | 121 |
| | | • | - | 34.5 | 1,57 | P.J | 100 |
| | | 1.5 | | | HT 1. | B 1 | |
| | | - | - | 7. " | 44 | -,: | - 41 |
| | | | 141 | | | | |
| | | | | | | | |
| | | | _ | | | | |
| | _ | | _ | - | | | |
| | | | _ | - | | | |
| 1071 | | • | _ | - | _ L | • | P1 |
| h | | | | | | | |
| 8.4 | | L7 | | | - | | |
| 8.4 | | | | | | - 5 | |
| | 76. | | | | | | |
| 12 4 120 | 14 | | _ | | | | |
| 1.5 | -91 | | | | | | |
| | | | | T | | | _ |
| h. | | 8.7 | | _ | | | _ |
| 4 1 4 | * | 77 | | _ | | - | |
| | | | | _ | | T | - 1 |
| | | | | - | ** | _ | _ |
| _ | . 11 | | | - | | _ | |
| | | | | T | - 1 | | ••• |
| 12 | | | | | | | _ |
| | | 87 | | | | | |
| | | 11 | | - | •• | | |
| | - 61 | | | -:- | | | |
| | | 33 | | - | - 7 | | - :: |
| | | 30 | | | - 4 | | - 2 |
| | L- | | | _ | | | |
| | 1- | TI | | | | | - |
| 1.71 | | TI | | | _ | - | |
| | | | | _ | | _ | |

* 4 4 2

| 177 - | - · | F1 12 | -1 | | | | |
|---------|-----|-------|----|------|----------|--------|-------|
| | | | FI | III. | T | 8/81 | 1000 |
| | pp | ••• | - | dh.t | 167 | 2.0 | 17 |
| PP- | | *** | | 0.00 | P-111 | 90.00 | |
| | | | | 71.5 | 7,000 | record | m. 4. |
| | | | • | | _ | •• | |
| .1 = ** | | _ | | | _ | _ | |
| | | -7- | | - | - 4 | | _ |
| | _ | -7- | | | *1 | 24 | _ |
| | | _ | | _ | | - | |

- 4 4 5

| · III | | | | | | 1 | |
|------------|-----|--------------|---|-----|---------------|------|----------|
| | | - | H | 127 | - | | == |
| MH- | | - | - | 254 | 1,0 | 74. | • |
| | _ | - 15 | | шл. | B-14- | ш. | Sec. 24. |
| | | 4 | 4 | " | | E-11 | 4.0 |
| | | | | | - | r h | |
| | | | | | | | |
| | | | | | | | |
| *117 | | - % | | | | | |
| | . — | - % | | | • • • | | - |
| 2412 | _ | • | | - | | _ | |
| | | • | | | _ | 1 | |
| 2 116 | | | _ | - | - | - 1 | |
| 4 17 | | • | | - | | | - |
| | | | | | | | |
| 3 14 | | 100 | | - 4 | | | _ |
| | | 100 | • | - | - | _ | _ |
| | - | - | • | - | - | - | |
| 71-0 | | _ | • | - | - | • | _ |
| | 200 | | • | - | - | | - |
| | | _ | | - | _ | ••• | - |
| | | - | - | • | | | - |
| | | | | | | | _ |
| The second | | n | | | _ | | |
| 75-18 | | | - | | | | 7. |
| | | | | | | | |

| 710' 0 - | | 10.0 | _ | | | | 1 |
|-----------|-------|-------|------|-----|-------|------|------|
| | | - | 46 | 77 | 122 | | 700 |
| wad: | 190 | | •• | 7 W | 1.67 | 27.7 | FA |
| | | | - h | -3. | B. 11 | = 1 | |
| | | | | | _ | | |
| Lare I La | | | | | | | |
| | | | | | | | |
| T | | • | | _ L | | | |
| | | • | | _ | 1 | | - 11 |
| | | • | _ | | | - | |
| ILIII | | | | | | | |
| | 51. | | | _ | _ | | _ |
| | -11 | | | | _ | _ | _ |
| | | | | | | _ | _ |
| | | | • | _ | | ••• | |
| | _ | _ | | _ | | _ | _ |
| | ~ | | | | | | |
| 150 150 | F-7 | | | _ | | | _ |
| | PH. | | | _ | _ | | _ |
| | | - 6 | | | - | - 4 | _ |
| | | | | _ | | | |
| | _ | 77 | | _ | | -, | _ |
| | | | | _ | | | _ |
| | 711 | | | _ | _ | _ | |
| - , - | | - 6 | | | - | _ | _ |
| | _ | - L-1 | - 11 | _ | | - 4 | |
| | | | | | | | - |
| L 1 | | 77 | | _ | _ | | _ |
| | - 6.6 | | | | | _ | |
| | 1 . | | | | - | | |
| 7. | | | | | - 4 | _ | _ |
| | 17. | 4.1 | | _ | *1 | - | |
| 1 .1 | | | | - | - | | - |
| | _ | - | | | | - | _ |

| | | 10.7 | • | | | 7 | |
|-------|--|------|-----|------|-------|------|---------|
| | | 41 | •• | | 'mu' | | 7 |
| | | | | !- | | TU | 7.5 |
| | | | - 4 | - | - | m 11 | - |
| | | | • | 2.00 | 1, 11 | 7,00 | |
| | | 7. | | | | • | |
| | | _ | • | - | _ | _ | _ |
| | | г. | | T | | | - |
| . 111 | | | | _ | _ | - 1 | |
| 1 81 | | | | | | | - |

) 4 4 4

| F - 1 | | *1.11 | | | | | 1 |
|-------|-------------|-------|----------|-------|------|--------------------|------|
| | | | | 1.001 | 1224 | 70 | 7700 |
| 194- | | | • | | ٠, | 2.7 | 77 |
| | | | - | - | E 4. | P 4. | т |
| | | | | 77.71 | 747 | $\sigma_{H^{\pm}}$ | -i- |
| | | | | | | | |
| _: | | | | | | | |
| | | | | | | | |
| | | - | | | | | - 1. |
| - | | | | | | - | |
| 8414 | | | | - | | - | _ |
| | ~- | - | | | - | _ | |
| | | - 5 | | - | | _ | |
| | | - | | | | L | _ |
| | | | | | | | |
| 16 | | _ | | _ | _ | - | |
| 111 | | _ | _ | _ | | _ | |
| 100 | | | 15 | - | | _ | _ |
| | | | | 7 | - 14 | | _ |
| | - | TI | | T | - 11 | - | |
| | | _ | | | _ | _ | _ |
| 7 | B L. | | - | | | _ | - |
| 31.33 | | | | - | - | | |
| | | _ | | "1 | - 4 | | _ |
| | | 2.00 | | _ | - | | - |
| 1 | | | | _ | | Ŧ_ | - 7 |

| 3181 6 . | n 1 · | 10.0 | ┗ 号 | | | a . | . . |
|----------------|-------|--------------|-----|---------|------|-------|------------|
| | | - | - b | 1000 | 1000 | + | . 8.7 |
| | | - | | 77 | 100 | 7.77 | 171 |
| -44- | | - | 7 h | | - T | B- 1- | |
| | | | • | M. J. | B 1* | M.Y. | L 31 |
| | | - | | | _ | | |
| | | | | | | | |
| _ | | | | | | | |
| | | | | - 11 | - | - | |
| | | | | | | | |
| | | | | _ | - | | 1. |
| 18411 | | | _ | | | | |
| 8.1 | No. | | _ | _ | _ | | _ |
| 8.7 | -11 | | | - | | - | |
| | | - 6 | | | - | | _ |
| | | | | _ | - | - 4 | _ |
| and the second | _ | 77 | | _ | _ | - 1 | |
| | No. | | | _ | | | _ |
| 12 128 | 10.5 | | | | | | _ |
| | | | | - | | _ | |
| | | | | | | - 7 | |
| | | | | | - | - | |
| a find | | 77 | | | | | |
| - | | | | | | | |
| | | | | | - | | |
| 2.00 | | | | - 7 | | | |
| | _ | 80 | | | - 6 | | |
| | _ | FI | | _ | - 6 | Ŧ | -71 |
| 16.0 | - | + | | | : | | |
| 1/1 | | | | | | | -2 |
| | - | Ŧ. | _ | | | _ | |
| | | \mathbf{z} | | | - 3 | | |
| | | | | - | | | |
| | _ | P- | | - | - | - | - |
| 1.1. | | | | _ | | T | |
| 1 - | | _ | | | _ | _ | |

4 A g b

| E-T- 11 1 | | -11- | | | | | 1 |
|-----------|---|------|---|------|------------|--------------|-------|
| | | | | 7772 | · T | =: | 18711 |
| | | - | _ | 200 | 15 | 1,7 | 121 |
| | | 184 | 4 | - N | F 5 | B. 11 | ETT. |
| | | - | | 100 | 200 | σ_{i} | M. II |
| | | | _ | | _ | | |
| 417710 | | | | _ | _ | - 4 | _ |
| | | -5- | | T | - 6 | - 94 | |
| | _ | TI | | _ | _ | - 14 | |
| | | _ | | | _ | | _ |

į

. . . .

| | | •••• | • • | | | | |
|----------|------|------|-----|------|-------|------------|-----------|
| | | - | | 177 | -=- | .57 | IIIM |
| | _ | - | н | ** | 1.7 | 1 | 1.0 |
| | | | _ | ш. | ~ | | - |
| | | | _ | - 7 | ٠ | \leq_{n} | C_{n_0} |
| | | | | | - 100 | - | |
| 1.6 | | | | | | | |
| 116 | | | | | _ | | |
| | | | | | | | |
| 841-2 | 100 | 4 | | | | | |
| 365 | | - 6 | | - 11 | | | - 1 |
| | | | | | 7: | | |
| | | _ | | _ | - | | - |
| L1 8 | | | | | | | |
| 144 | 4 | | | _ | | _ | |
| . 1 (10) | 277 | | 1- | | - 4 | | _ |
| - | | - 6 | 1- | _ | - 4 | - 4 | _ |
| | | 78 | | _ | _ | - 44 | _ |
| ll | | 77 | | | _ | _ | - |
| L | | 77 | | | | _ | - |
| 16.11 | | | - | _ | _ | _ | - |
| 111211 | ** F | | | - 4 | | | - |
| | | | | - | -1 | - 4 | |
| | | _ | | - | 7 | - | - |
| · · · - | - | _ | | | _ | _ | |

* 4 % 4

| A | N | | | | | | | | | | | |
|-----------|------|-------------------------|-----|---------|--------|---------------|--|--|--|--|--|--|
| | | | | | 72 | | | | | | | |
| | | - | ₩. | P 48 P1 | | ± •• • | | | | | | |
| HH- | | | - | 4.1 | | - | | | | | | |
| | | | - | Marie | PR-7.1 | E41 | | | | | | |
| | | | +++ | | E-31 | | | | | | | |
| | | | | | | | | | | | | |
| 1.4 | | | | | | | | | | | | |
| | | | _ | - | - | | | | | | | |
| 164 | | | | | | | | | | | | |
| UPI | | | _ | | - | | | | | | | |
| | | | | | | | | | | | | |
| | | | | - | *1 | _ | | | | | | |
| | | 6.7 | | _ | - | _ | | | | | | |
| | | 77 | | | _ | | | | | | | |
| | 5.00 | | | | _ | 7 | | | | | | |
| 150 (150) | - | | | _ | | - | | | | | | |
| 4.5 | | - 6 | | - 4 | - | | | | | | | |
| | | - 6 | | - 1 | - 14 | | | | | | | |
| | | 87 | | | - 1 | - | | | | | | |
| 1 - | | - | | _ | - 11 | L . | | | | | | |
| 1844 | | | | | | Ē | | | | | | |
| L-1 | - 4 | | | | _ | - | | | | | | |
| 1 | 1.71 | | | | | | | | | | | |
| | | | | - 4 | - 94 | | | | | | | |
| | | 7. | | - 9 | - 9 | | | | | | | |
| 1. | | 7 | | | - 4 | | | | | | | |
| 4 1 6 | | ÷ | | | | | | | | | | |
| 94.9 | 7.2 | | | | | | | | | | | |
| 1/1 | E E | Ŧ | | | | | | | | | | |
| | 100 | $\overline{\mathbf{x}}$ | | | | | | | | | | |
| 100 | | - | • | - 6 | | | | | | | | |
| | | | | | | | | | | | | |
| 1 | | P- | | | | | | | | | | |
| | | P- | | _ | - | | | | | | | |
| | | | | _ | | - | | | | | | |

* * *

| h-p | | -1 | • • | | | |
|--------|---|-----|-----|-----------|---|-----|
| | | - | | - | 72 | 272 |
| | | - | ₩. | | | ± ± |
| | | | _ | | ٠ | |
| | | | _ | B4 - 5 12 | $\mathbf{H}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}}$ | E 1 |
| | | _ | _ | | | |
| 400000 | | | | | - | |
| 110 | | - 4 | | | - 4 | - 4 |
| | _ | 47 | | | *1 | *1 |
| 1- | | 87 | | _ | | _ |

4 8 8 9

| been as a | | | | | | |
|--------------|-----|------|----|-------|------------------|--------------------|
| | | •• | ** | | 1880.
11 mm | 1.400 m
1.000 m |
| | | - | | - 84 | | - : |
| | | - 11 | - | | _ = 1. | - |
| | | + | + | 2.00 | III 11111 | 82.01.41 |
| | | ш | | | Mark . | |
| · b· · · · · | | | | | | |
| 17 | | | | | | |
| | | • | | | | |
| | | • | | | | |
| | IFL | | _ | | | |
| | | • | _ | 4. | | - |
| | | • | | | | - |
| 41- | | • | | | - | |
| IMA | | | | | | |
| | -6- | | | - | | |
| 1877 | | | | | | - |
| | | LL | | - 4 | 4 | - |
| - | | 77 | | • • • | - 4 | |
| 1-1 | | 77 | | | _ | |
| | | 77 | | | _ | |
| 111741 | LL | | | | _ | |
| 1.141 | -, | | | | | |
| | | -7- | | | _ | |
| | | TI | • | 1 | - | - |
| | - | т. | | _ | - | |

| | | - | | -4 | 4614 | 17814161 |
|------|-------|-----|-------|------|-------------|-----------|
| | | | 1-4-1 | 1 | | 14812-21 |
| _ | 100 | *1 | 15 | _ | 127 | |
| | . 640 | | 15 | - | TO SHOW THE | |
| | 77 | • • | | _ | ~ | |
| - | - | | 16 | | - 6 | ALC: 4-4- |
| | - | - | - | - 16 | | |
| - | 704 | r | - | - | | 100 715 |
| - | ~ | | | | - | 1 |
| | - | _ | | | - | .40 |
| 41 | 944 | | 17 | - 1 | - 1 | . |
| | 71 | | | - | - / | 170 1110 |
| | - | - | | | - 1 | .44 |
| | - | ~ | - | - 44 | - | 149 |
| 15.0 | 700 | | 27 | - | | P4 |

| alas so as | -l | | | | | | | | |
|--------------|----|------|-------|--------|-----|--|--|--|--|
| | | | | , | | | | | |
| F | | LIJ | 47,00 | 41 - 6 | 4-4 | | | | |
| | MI | 17 | | - 1 | | | | | |
| _ | 71 | | | - | - | | | | |
| | | - | - | - | | | | | |
| | м | 100 | 100 | -1 | | | | | |
| | - | | | | - | | | | |
| | _ | - | - | | - | | | | |
| | _ | 77 | | 12 | | | | | |
| | - | - | _ | | - | | | | |
| | _ | 114 | 116 | | | | | | |
| | _ | 17 | - 11 | 16 | | | | | |
| | - | | | | - | | | | |
| 1 | _ | - 14 | - 16 | | - | | | | |
| | _ | - 11 | | 124 | • | | | | |
| Terror | - | - | | | - | | | | |
| 1 100 Terror | - | _ | *- | | - | | | | |

बंदोन कर्कत्

| F-100 | •• п | 9 919 | ■■号 | | | | 1 |
|-------|------|-------|-----|-----|---|-----|------|
| *** | - | mper. | - | -4- | | W. | 700 |
| ***** | | | - | 13 | - | 418 | |
| 137 | ** | - | • | | - | | 1211 |

| | | 1 444 |
1444
1447 | a1 | 75.5 |
|-----|-----|-------|------------------|----|------|
| - 1 | -04 | |
- | N | |

| | | 14 | 1411 | | | | | | |
|---|----|----|------|--------|--|--|--|--|--|
| | | | ш, | -14-4- | | | | | |
| F | 76 | - | -1 | - | | | | | |
| | 77 | _ | | | | | | | |
| | | _ | 4 | | | | | | |
| - | HE | _ | 71 | | | | | | |
| | 77 | | | | | | | | |
| | 75 | | | | | | | | |
| | m | 1 | - | | | | | | |
| | | | | | | | | | |

al day years

| 7001 | is. | ••• | | | | 100 | _ | ::3: |
|------------|-----|-----|-----|----------|---|-----|-----|------|
| 411441 | | | | <u> </u> | | | - | |
| 176 | | | | | | | | |
| | | | | | _ | | | _ |
| 11- | _ | _ | | | _ | _ | | - |
| . 10.1 | | _ | _ | - | | | | |
| 1.1.0 | | | | | | | | _ |
| BII | | _ | | | | | | _ |
| | | - | _ | | | | | |
| | | - | | | | | - | |
| 611 | | - | _ | - | | | | 1 |
| - 1 h | _ | - | _ | - | _ | | _ | -11 |
| 1 - | _ | - | _ | | _ | | - | |
| To a Table | _ | | | | | | _ | |
| | _ | | | | | | - | |
| 1.4 | _ | | | | | | - | |
| 18-4 | - | - | | - | | | - | |
| - | | | | - | _ | | | |
| . 1.4 | | | _ | - | _ | _ | | |
| E 4 | _ | | - | | | | - | |
| | - | | | | - | | - | |
| I - | - | | | | - | _ | | |
| 1 - | _ | | | | _ | | | |
| 15.4 | - | | | - | _ | _ | - | |
| 1.4 | - | | | - | | _ | | |
| | | | | | | - | | |
| - 44 - | - | | | | _ | - | | |
| | - | _ | _ | | - | | 10 | - |
| 1.24 | - | | | - | - | - | | • |
| | T | | | •• | - | _ | 100 | - |
| | 7 | | • • | • | - | | | - |
| 1 | 7 | | •• | | • | | | • |
| | 7 | | | | | | • | - |
| | | | | | | | | |

ditrody

| France - 1 | | -1 | ■号 | | | - | - 1 | |
|------------|----|-------|----|-----|-----|---|-----|---|
| - COM | 15 | n m v | | T#r | -=- | | | 뙋 |
| HEATTLE | | | | | | | | |
| 1.8 | | | | | | | | |
| | - | - | | | | | | |
| LL | 7 | - | - | | | _ | | |
| a la com | - | - | | | | | | |
| . 841 | _ | - | _ | | | - | | - |
| | - | - | - | | •• | | ••• | |
| 41 | | - | | - | | | - | - |
| 111.76 | | | | | | | | |
| | | - | | | - | | | |
| | - | | | | | | _ | |
| | - | | | | | | • | |
| - | - | - | | •• | - | | | - |
| 1 4 | | - | - | | | | _ | - |
| | | | | - | - | | | • |
| 1-46 | | | - | - | | | | - |
| 1 | | | | | - | | | - |
| | _ | | | | | | | - |
| | | | | | | | - | - |
| L -4 | | | | | • | | - | - |

有限性制度性

| | - | | | | | |
|---------|-----|-----|--------|----|---|----------|
| | | 4.5 | aując. | -1 | | |
| 700 | 17 | | | | | 1481.81 |
| | | | | | | |
| , | | | | | | |
| _ | | | | | | |
| M.E. | - 5 | | | | - | |
| | - % | | - 1 | | - | |
| 1741 | ~ | E I | - | • | - | |
| | | | | | | |
| - | _ | | - 4 | | | |
| | _ | - | - 4 | _ | | |
| | _ | - | | _ | - | |
| 8.1 | _ | - | - | _ | - | |
| F1. 1 M | _ | - | - | _ | | |
| | _ | - | - | _ | | |
| 17 1 8 | _ | - | - | | • | |
| | _ | | - | _ | - | |
| L 7 | _ | - | - | _ | • | |
| | _ | | - 4 | _ | | |
| | _ | - | - | _ | | |
| | _ | - | - 4 | _ | | |
| | _ | - | - 4 | - | | |
| . 141 | | - | - 4 | _ | | M2 4 4 5 |
| - 11 | _ | - | - 4 | - | | |
| | _ | - | | _ | | |
| | _ | - | - | _ | • | |
| - | _ | | - | _ | • | |
| 1 | _ | | - | _ | • | |
| . 44 | _ | _ | | _ | • | |
| 1. 11 | _ | _ | | _ | • | |
| K 11 | _ | | - | - | • | |
| - 1 | _ | | _ | _ | • | |
| | _ | | _ | - | • | |
| | | | | _ | - | |
| | _ | _ | _ | | | |
| L L | | | | | | |

| | | -, , | | | | 11. | 1 1 |
|---------|----|------|-----|-------|-----|-----|-----|
| | | 41. | - | -1 | - | | |
| | ٠. | 4 | 2.5 | 45.00 | | | • |
| MILWEIL | | | | | | | |
| 718 | | | | | | | |
| | | - | - | | - | | |
| m.e. | | - 4 | - | - | - | | |
| 4414 | | - 4 | - | | - | | - N |
| | - | 4. | | | | • | • |
| 1- 64 | | 4. | | | - 1 | | |
| - 65- | | - | - | | - 1 | | |
| mile. | | | | | | | |
| | _ | | - | _ | - 1 | | |
| | _ | _ | - | | | | |
| LE 1 | _ | | - | _ | - 1 | | |
| | _ | | - | | | | |
| | _ | | _ | | | | |
| | _ | | | _ | | | - N |
| 1 | _ | | | | | | |
| 11-11 | | | _ | _ | | | |
| 1 | | | _ | _ | | | |
| 1 | _ | | | _ | - 1 | | |
| | | | _ | _ | | | |

建筑中的电压

| r | | ., ., , | l | | | | |
|---------------|----|---------|---|---|------|------|------|
| | | | | | | 700 | |
| | 17 | 4 | | | 8184 | HIEN | |
| 11441 | | | • | | | | |
| 11.0 | | | | | | | |
| 140.11 | | | | - | _ | | |
| 11.4 | _ | | | | | | |
| - AMI I | _ | | | | _ | | - "- |
| 11128 | | | | | | | |
| N-7 | _ | | | | | | |
| 1.0 | _ | _ | _ | | - | | |
| 1.0 | _ | | | | | | |
| E71 | _ | | | - | | | |
| 11.1 B L | | | _ | - | - | | |
| - 1.0 | _ | | | - | | | |
| Market Bridge | | _ | | | - | | |
| - 14 | | _ | - | | | | |
| 4.6 | | | - | | | | |
| 444 | | _ | - | | | | |
| - | | | - | | | | |
| - 1.0 | | | - | | | | |
| 1.0 | | | - | | | | |
| . 600 | | | - | | | | B-10 |
| - 17 | | _ | - | | | | |
| 1 | | | - | | | | |
| | | | - | _ | | | |
| I P | 77 | | - | | | | |
| 1 | - | | - | _ | | | |
| MI | 77 | | - | | | | |
| 4.1 16 | ÷ | - | - | - | _ | | |
| 1.24 | - | - | - | - | | | |
| 1 - | - | - | - | - | _ | 2.5 | |
| | | - | | - | _ | | |
| | ÷ | - | | - | | 4.5 | |
| . 11 | - | - | | - | - | 11 | |
| 1 | | - | | | | 4.4 | |

diposent.

| | - | | | | | | |
|---------------|----|------|------|-------|------|-----|-----|
| 481- | 1. | | | 1000 | 166. | | |
| | ١. | B.L | 4:15 | dres. | 8184 | | |
| MINERAL TOTAL | | | | | | | |
| 118 | | | | | | | |
| . 148 | | | | | | | |
| | | | | | - | | |
| | | | | | - 4 | | |
| . 1411 | _ | | | | - 4 | | 1 |
| 1- 44 | _ | | | | - 4 | | |
| - 81- | _ | _ | | | - 5 | | |
| 1.17 | | | | | | | |
| _ | | _ | | | | | |
| -1-0 | _ | _ | | | - / | | |
| | _ | | | | | | |
| | _ | | | | | | |
| 1111 | _ | | | | | | |
| | _ | - 11 | | | | | 100 |
| 16-41 | _ | - 1 | | | | | |
| 11-11 | _ | - 1 | - | | - | | |
| 1—1 | _ | | | | | | |
| 1 | _ | _ | | | • | 1.1 | |
| . — | _ | | | - | • | F - | |

49年1466

| Laborate and | | | | | |
|--------------|-------|------------|------|-------------|--------|
| | | • • | i Fi | | |
| | | ٠, | 4- | 22.519 | 10.100 |
| | | | | • | 1 . |
| | | | - | BC 511 | |
| | | - | dir | | # |
| | | | | | |
| la d | | | | | |
| 11 Th | | | | | |
| 11-4 | 40.00 | | | | |
| 1 - 1 | | - % | | | |
| | | | | | |
| | | L 7 | | - 1 | |
| 6.4 | | | | - | |
| 1.4 | | 77 | | | |
| 81. | | | | _ | |
| 12 4 128 | | | | _ | |
| 1 - | -7. | | | - 7 | |
| | | - 33 | | | |
| L-' | | - | | | |
| 1 - | | | | _ <u>-</u> | |
| | | -11 | | | |
| 1.6 | | | | | |
| | - | _ | • | | |
| 1 - | | - | | | |
| | | - | | | |
| / 1- | | | | | |
| | | | | | |
| 14.7 | _ | | | | - |
| | | _ | | | _ |
| 54 | 45 | + | | - | - |
| | | - | | | |
| | | - ^- | | - 4 | - |
| | ==: | ~ | | - 4 | _ |
| 1 | | F | | - | - |
| 1 - | | | | _ | - |

भी भी कर समुख्य क

| | | Sac | 5 140 | | | |
|------|---|-----|---------------|-----|--|--|
| | | | | 1 . | | |
| | | | = 1141 | L - | | |
| | | | = 11 | | | |
| F1.0 | | - h | | _ | | |
| | | - 6 | T | - 4 | | |
| | _ | 6.7 | - | - 4 | | |
| h. | | 77 | _ | _ | | |

. . . .

| hara a | |
|--------|--|
| | |
| - | · |
| ** | |
| T | |
| - | . Mr. 684 9 4-1 -11 19-19-19-2- |
| - 4 | |
| | · |
| - | edelik er in eren. De ne enne en sin en en en en ere |
| | Make to the first the probability of probabilities a large support |
| - | ******* * * * * ************* |
| | THE THE PARTY OF T |
| | other with the beautiful to the last th |
| | ************** |

. . . .

| terior and a second | | | |
|---------------------|------------|--------|--------|
| | | 1-6 | |
| | -9 | 4 | -9-9- |
| | 100 | | |
| 100101-11 | | *** | PATE P |
| -10-14- | -1 -4 | | -, |
| 4 | | 440.00 | м . |
| | | | A |
| 7748 | - Williams | | 20.00 |
| addard again | | | Mar . |
| 7.67.05 | | | |
| | | | |

检

測

报

告

DOCUMENT.

- - - - - 号

the many and many arrangements are in-

abana a ayan a

_ _ _ _ _ _ _ _ _

| hale | 9 |
|--|----------------|
| | |
| and Trailer | |
| | |
| | ··· |
| FF1 | |
| b.b | |
| ************************************** | |
| - 144- | |
| e; | Sinting. |
| Story | |
| # -1 # - | and the second |

in the second

| L.L | | .1 | | | |
|-------|------|--------|-----------|-------------|-------|
| | - | - b | | | 184 |
| _ | - | •• | | 41.5- | 1- 1- |
| THE . | _ | 78 | m-1. | | E4 11 |
| | - | | | A 100 P | 70.00 |
| | - | 100 | | | |
| | 100 | | | - | |
| 10 | 7 | - | - | | - |
| - 4 | 41 | 10 | - 16 | - | |
| | - 11 | | - | | - |
| | 4. | | _ | | |
| 7 | - | - | - | | |
| | 4 | - | - | ш | |
| | | - | | | - 1 |
| - 1 | -1 | Will I | | ш | _ |
| 16.0 | 7 | - | | | |
| | .=:- | == | : = = .:: | =: | |

种 物 的 甲

| | | | • | - 1 | |
|---------|------|--------------|-------|-----|------|
| | _ | e L | | | |
| | - | •• | | | |
| 40. | | - | B-11 | | 8.41 |
| | - | - b | | | A 22 |
| | 44 | 444 | | | |
| - | 5.00 | | | 7.1 | |
| 14 | 71 | _ | | No. | - |
| F | 20 | IF | ~ | | |
| | - | II. | | - | - |
| - | 20 | 15 | - | - | |
| | | •• | | | - 9 |
| | - | 15 | - | - | |
| | - | | | - 1 | -1 |
| | | 1111 | | | |
| MIP Age | 71 | | | | |
| | Ξ: | 35 (5 | -2::: | 2 | |

4 M P

| 1-1- | | | | | | |
|--------|-----|-----|-----|--------|---------|--------|
| | | | - | | | |
| 400. | | ٠. | - | 55.515 | 16.515 | 16.110 |
| | | - " | - | | - N - 1 | • |
| | | - | | B. 111 | 8.81 | L. 41. |
| | | + | 100 | | mak. | |
| | | | | | | |
| | | | | | | |
| ., | | • | _ | | | - |
| | | • | - | | - | |
| | | • | | • | - | |
| | | | | | | |
| 7 | | | | | | |
| | | - | | | | |
| | | | | | | |
| | | | | 3 | | |
| | | - | | | | _ |
| | | | | - 11 | | - |
| | | | | - | | - |
| 11 | | 4 | | 7 | | |
| _ | | - | | -1 | | • |
| 1111 | | - | | -1 | | |
| 1.315 | | - | | - 1 | | |
| 1.0 | | | | | | - : - |
| 201 | | | | | - :: | - : |
| - 1 | | -: | | | | |
| 1 11 1 | -91 | | | | | = = |
| - | | | | | | |
| 10 | | | | - 4 | | |
| 170.1 | | - | | - 4 | | |
| - 1 | | | | | | ••• |
| 1 . 20 | = | | | | _ | - |
| 4 11 | -7. | | | | | - |
| | | - | | _ | | _ |

. . . .

| | | | ■ 号 | | | | | | |
|-------|-----|----|-----|----|---|----|-----|---|-----|
| | | 4. | - | | | - | | | - 1 |
| 44 | | -, | - | -1 | - | 10 | 100 | | |
| | | P | - | - | | - | 71 | - | |
| | | | ••• | _ | - | | - | - | |
| | | | | | | | - | | |
| 1.4 | | _ | _ | | _ | | _ | | |
| | 200 | _ | | | _ | | - | | |
| - 114 | | _ | | | _ | | | | |
| - 1- | | _ | | | | | | | - |
| . 1- | | _ | | | | | | | - |

* * * *

| | | | | | | - | |
|-------------|-------|-------|------|-----|---------------------------|------|---|
| | | | ٠. | н | | | _ |
| | | | 44 | _ | | | |
| | | | - 10 | | B. 1. | 4.1. | - |
| | | | - | + | $\sigma_{i} = \sigma_{i}$ | | |
| | | | 46 | | | · | |
| The | | | | | | | |
| Fill | La la | | | | | | |
| File 1 | | | - | | | - | • |
| | | al ba | | _ | | | |
| | PR 17 | | - | _ | | - | |
| | 4 | | - | | | - | - |
| | | | - | | | | |
| | | | • | _ | | | |
| | | | | | | | |
| | 116 | | | | | _ | _ |
| | | | | • | | | _ |
| | -1. | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | - |
| E-41 D7. 4 | | D7. | | | | | - |
| 1701 T1 4 T | | | | | | | - |
| | _ | | | - 1 | | | |
| | _ | | | | | | |

- - -

| | | | - | | | | | |
|-----------|------|----|----|----------|-------|----------|--|--|
| | | | 4 | | | | | |
| | | | | - | -F | | | |
| | | _ | 41 | | 0.00 | e 10 | | |
| | | - | | PT 16 ** | 46.41 | March 11 | | |
| | | 5 | - | | | | | |
| 12 march | | | | | | | | |
| 1- | | | | | | | | |
| | | | | | | | | |
| | | | | | _ | | | |
| | | | | - | | | | |
| . — | | | | | | | | |
| | _ | - | | _ | | | | |
| | | - | | | - 4 | - | | |
| | | - | | 7 | - | - | | |
| 12.0 | | | | - | - | - | | |
| | | | | T | - | - | | |
| | | | | - | | | | |
| | | - | | T | - | | | |
| - 11 | | | | - | _ | | | |
| | - | -2 | | - | | | | |
| 7110 | | | | - | _ | | | |
| | - | | | - | | | | |
| 1.7. | | | | | | _ | | |
| 1 1 | - | _ | | - | •• | | | |
| | • • | | | - | | | | |
| 1 | LL. | | | - 4 | | | | |
| | | | | ш | | | | |
| | 1 '1 | _ | | - | | | | |
| - 11 | BIN. | _ | | - | | | | |
| . 548 1 | 1 | _ | | _ | | | | |
| 1 | 4 | | | - 4 | •• | | | |
| 4 4 1 4 H | ==: | Ŧ | | - | - | | | |
| 1 | | | | | - | _ | | |

| 1 | | | | | - | |
|------|---|------|----|---|------|--------|
| | | | el | | | - |
| 4 | | | - | | | 40.000 |
| | | - 12 | + | | 7 7' | - TT |
| | | - | | | > - | |
| | | - | - | | -46 | |
| 1.4 | | - | | _ | _ | |
| . 44 | | - | | _ | L . | |
| .1- | | ٦. | | _ | | |
| | _ | 7 | | _ | - | - 1 |
| 1- | | 7 | | _ | _ | - |

| h | | | | | _ | |
|------------|-----|----|----|----------|-----------|----|
| | | | | | | |
| | | _ | 41 | | | |
| | | | | | | |
| 44.4- | | • | | | | |
| 7. | | 41 | 4 | - | | m |
| | | | - | Mr. Lond | B-191 - 1 | |
| | | •• | | | | |
| | | | | | | |
| 1 | | | | | | |
| _ | | | _ | •• | | |
| | | | - | | 1. | |
| E-71 | | | | _ | • • | •• |
| | | | | | | ** |
| | | • | | - 11 | | |
| ! - | | | | | | |
| ■ — | | | | | | |
| - 11 | | _ | | _ | _ | _ |
| 7717 | • | | | - | _ | _ |
| 711 | | _ | | - | _ | _ |
| 7 | | - | - | | - | |
| | | | | | - | _ |
| | | _ | | _ | _ | |
| 1 | | _ | | _ | _ | |
| 1-17 | TI. | - | | - | | _ |
| | | _ | | T | | _ |
| | | Ľ | | _ | | |
| | | | | | - | 7 |

dit, emin

| . — . | | | • | | | 1.00 |
|---------|----|----|----|------|--------------|----------|
| | | | | • | \mathbf{T} | 2006 |
| | | | | 7755 | 7. | .1-1 |
| | M. | - | - | | - | |
| - 1 | | T. | 10 | | - | |
| | _ | IF | | - | | 1004 |
| - | 20 | - | | •• | - | 1771 |
| - | - | - | - | _ | | <u> </u> |
| | _ | п | - | _ | - | B4 1 |
| - | 40 | | | | - | T : |
| | - | - | - | _ | - | |

| | II | | -1 | -,1 | | | |
|---|-----|----|------|-------|---|--|--|
| | | | MINE | 0.01% | | | |
| | | - | | | - | | |
| | 1 | | | 1 | | | |
| - | | _ | - | | - | | |
| • | | | _ | | - | | |
| | 4 | - | 4. | - 4 | | | |
| - | 71 | 7. | | | | | |
| • | -1 | - | - | - | | | |
| | 4 | _ | | N | | | |
| - | 111 | - | 4. | - | | | |
| | | 7. | - | | | | |

d de man

| | | | 号 | | h la . |
|-------|---|-----|--------|---------|--------|
| . 6.4 | | | -4- | | |
| | | | 681814 | B. die. | |
| | - | 1 | 4. | • | |
| | - | | | ir. | |
| | _ | - | | | |
| - | - | - | | | |
| | - | _ | _ | 1. | |
| | _ | 1.6 | - 19 | | |
| 1. | | | _ | | |
| | | 4 | | - | |
| • | | | | | |

| •••• | 7. |
E.33 |
|------|----|----------|
| _ | - |
187 |
| | |
_ |

| | | ш. | | -1-10-4 | | | | | - | | |
|----|----|-----|---|---------|----|----|-----|----|---|-----|-----|
| 25 | | F.4 | - | 4 | 4 | 7 | 7 | Ţ, | 7 | 2 | 12 |
| | - | - | | | | | | | | | 140 |
| | 40 | | | - | | - | ••• | ır | • | 111 | 140 |
| | 40 | -11 | | | | •• | | ш | - | | 140 |
| | - | -11 | | | 11 | 12 | | | • | 2.7 | |

| -1 | | | | | - | | | | ٠. | | |
|----|----|---|-----|----|-----|-----------|------|-----|-----|-----|-----|
| | | | | | | - | | | 114 | | 768 |
| ₽. | 76 | | | - | | Maria. | MIT. | 414 | | | 111 |
| | | | | | | | | | | | |
| | _ | _ | -11 | 4. | -4. | 41 | 4. | - | - | ~ - | ·T |
| - | - | _ | -11 | - | | | | | - | | T. |

| | | | | | 817F | T |
|------|----|-----|-----|---------------|---------|------|
| 1814 | | | | To the second | PROFES. | 77 |
| - 4 | | _ | | | - | *** |
| | | - | 111 | | - | |
| - 1 | - | •• | | | _ | - 4 |
| - 4 | • | - | | | | |
| - | | - 0 | | 44 | - | P*** |
| - | 41 | | | 41 | - | |
| * 10 | ш | | - | | | |

|
17.19 | | | -18 |
|-----------|--|-----|-----|
|
- | | 100 | |
| ٦٠. | | | - |

aer⇔n

| / | | . — . | 号 | | | - | | |
|-----------|----|-------|------|--------|---|-----|-------|------|
| | | | عمرد | 40 - 1 | | 400 | | 1000 |
| 861- | | | 100 | | | | | |
| | | | | | | | . 22. | ~ |
| A Frank I | | | | | | | | |
| 1116 | | | | | | | | |
| | T | _ | • | | • | | - | - 1 |
| | | _ | | - | • | | | - |
| | | | | | | 1 | | |
| 1111-7 | | | | | | | | |
| | F | _ | ••• | • | • | • | - | • |
| L - | | | - | ••• | • | - | | |
| | | | | | - | - | | |
| | _ | | - | _ | - | - | | |
| | _ | | - | • | - | | | |
| | | = | - | - | - | - | | |
| 10 . 100 | ÷ | - | | - | ÷ | | | |
| | | | - | | - | | - | -: |
| | - | | - | | - | | - | |
| | -5 | _ | - | - | - | | | |
| 2.0.1 | - | | | | | | | |
| 1 h | | | | -1 | | | | |
| h | - | _ | | | | - | | |
| •• | _ | _ | - | | - | | | |
| 2.00 | | | - | | 7 | | 1 | |
| | _ | - 6 | | - | - | - | ~ | |
| 41 | - | - | - | | - | | | |
| | - | - | | | - | | | - 1 |
| | | - | - | | - | 1.1 | -11 | - |
| .1.11 | _ | - | - | | | | | |
| | _ | - | - | | _ | | | - |
| | - | - | | | | - | | - |
| | - | | | | | | | - |
| | _ | | | I.F | | | | |
| . 0 | _ | | - | | | | | |
| | | | | | | | | - |

电影声响电池

| Magazine de la | | | 号 | | | | | |
|----------------|-----|------|--------------|-----|------|--------------|----|----|
| | 11 | •••• | nga.
Mari | | •••• | 145-
2321 | | Į. |
| * 649 1 649 | | | | | | | | |
| 1.0 | | | | | | | | |
| _ | | | | | - | - | | |
| 10.0 | - / | • | | | | | 14 | |
| MARK P | | | | | | - 1 | | - |
| . 148 1 | _ | - | _ | | | | | |
| | - | | ••• | | | | | - |
| | _ | - | | ••• | • | | | - |
| | | | | | | | | |
| - 11 | | | | | - | _ | | - |
| = 14 | | | - | | | | | |
| | - | | | | | | | |
| | - | • | - | 1- | • | | | |
| P .8 | - | 1 | | 1 | 1 | | | - |
| | | _ | - | - | - | | | |
| | | - | | | | | | |
| | - 7 | • | | | • | | -1 | |
| | - | • | 1 | | • | | | - |
| | | L | | | | | | - |
| | | _ | | | | | | |

美美女的

| h | Name of the contract of the co | | | | | | | | | | |
|-------------|--|-----|------|---|---|--------|--|--|--|--|--|
| | | | | | | | | | | | |
| | 4. | | | | | large. | | | | | |
| | | | 4.23 | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | _ | • | | | | | | | | |
| | | | - | | | F | | | | | |
| | - | _ | • | | • | | | | | | |
| -1 | | | | | | | | | | | |
| 81. | | | | - | | | | | | | |
| | - | _ | | - | | | | | | | |
| | - | | 7 | _ | | | | | | | |
| | - | | · · | | • | | | | | | |
| 1 | | | - | | • | | | | | | |
| | _ | | _ | _ | | | | | | | |
| - / 1 - | F | | | _ | | | | | | | |
| 7. | | - 4 | - 4 | | | | | | | | |
| | - | - 4 | - | _ | • | | | | | | |
| - | - | | - | _ | | | | | | | |
| - 1 | | - | | | | | | | | | |
| | | | -1 | _ | • | | | | | | |
| 100 | - | - 4 | - 4 | | • | | | | | | |
| . 64. | _ | | _ | - | A | | | | | | |
| - 11 | - | | ••• | _ | | | | | | | |
| | _ | | -1 | | | | | | | | |
| | - | - 4 | - 44 | | | | | | | | |
| | - | | - | - | • | | | | | | |
| | | | - | | 1 | | | | | | |
| | | | -1 | - | | | | | | | |
| Nº 11 | - | - 4 | •1 | | | | | | | | |
| | | | - | - | • | | | | | | |
| | 7 | _ | _ | - | • | | | | | | |
| -1- | | | •• | _ | | | | | | | |
| | | - | -1 | | | | | | | | |
| | | | - | - | | | | | | | |
| 41 | - | | | _ | • | | | | | | |

建氯甲磺胺

| A | | | | | 9.1 | |
|-----------------|---|--------|------|---|--------|------------|
| | | 14 | | | | |
| 7851 | | | 1204 | | 8.1840 | The second |
| | | 7-8-81 | | | | |
| ALC: NO. 10. P. | | | | | | |
| 17.6 | | | | | | |
| | - | | _ | | | |
| 77 | - | 1 | - | | - | |
| | N | | | | - | |
| . 841 | | _ | 1 | | | |
| | - | | | | | |
| | | - | | | | |
| -1 | | | | | | |
| - 11 | | - 4 | | _ | | |
| | - | | - | _ | | |
| | | _ | - | _ | | |
| 1 | | - | | _ | - | |
| | - | - 4 | - | | - | |
| 1 | - | | - | _ | | |
| | | _ | | _ | | |
| | - | -1 | - | _ | | |
| 8-6 | | - 44 | | _ | | |
| 41 | - | - | | | | |
| | - | _ | | _ | | |

भी में का सहस्र है।

| | 1200 21 | п 1 | 1.313111 | | | | |
|--|----------|-----|----------|-----|---|---|-----|
| | 788. | ١. | | | | | |
| 198 | A FEMALE | | | | | | |
| 1988 | I | | | | | | |
| Table | | | | • 1 | - | | |
| | 178 | - | 10 | • 1 | - | - | |
| Martin | | _ | | | | | |
| | ILLIN | | | | | | |
| | | - | | | - | - | |
| | | | - 19 | -1 | _ | • | |
| | | _ | | -1 | - | - | |
| | | - | | ••• | | | |
| The control of the | | | | | | - | |
| | | | | | - | - | |
| | | | | 51 | | - | |
| | | _ | - | _ | | | |
| | | | | | • | | |
| Total Dec De | | | | | • | | _ |
| | | | | | | _ | -13 |
| | | | | _ | | | |
| The color The | | | | | | | |
| | | | | | • | | |
| # 11 | | | | | | | |
| | _ | _ | | | | | |
| | | | | | | | |
| Top | | _ | | | | | |
| | | | | | | | |
| | _ | | | | | _ | |
| Total | | | _ | | | | |
| | | _ | | | | | |
| 1 401 D F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | 116 | _ | - | | | | |

| | rs. | ***** | # | ejee
Histori
Leet | 10.00 | ₹. |
|--------|-----|-------|-----|-------------------------|-------|---------|
| HERE & | | | | | | |
| 11.0 | | | | | | |
| | - | | | | | |
| | | | - 1 | | | - 4 |
| FRIC | _ | 14 | - 1 | | | |
| . 841 | _ | | - | | | |
| | _ | | • | | | |
| | _ | | - 1 | | F 1 | 4.1 |
| | | | | | | |
| - 11 | _ | _ | - | | - | |
| 3114 | _ | | • | | - | |
| | - | •• | • | | 7. | |
| 1 | | 11 | 1 | | 41 | |
| | | | - | | - | |
| | _ | | • | | | |
| | _ | | • | | | |
| 170 | | 1- | - 1 | | | - 2 - 2 |
| 764 | _ | | | | | |
| 46 | - | | • | | - | |
| | _ | | | v.v. | - | |

| A | | , | | | | | |
|-------|-----|---------|------|--------|----|------|-------|
| | | | | - b- b | | - N | |
| | 7.5 | -4 | | 44.00 | - | 771 | N. Bi |
| | | | | L | ш. | | |
| 111 | | | | | | | |
| | - | | | | | | |
| | - 3 | 1- | | | | 1 | L- |
| - | | 116 | - 11 | | | | |
| ILIM | | | | | | | |
| | | | ••• | | | | |
| 1.7 | - | | | | 4. | | |
| 1.7 | - | II. | | - | - | | |
| | _ | 1- | _ | _ | | | |
| | | | | | | | |
| | -51 | | | | | | |
| | - 6 | | - 4 | | - | | |
| . 1.0 | | - : : : | _ | - | | | |
| | 7 | | | | | | |
| | - 6 | | - | | | 1.1 | |
| | - | | 5.1 | - N | | | |
| | _ | | _ | - | | | |
| . 1-1 | | | •• | | - | | _ |
| | | | | - | | | |
| | - / | 1- | • 1 | 1 | | 1. 1 | |
| 10.7 | _ | 14 | -1 | - | | | |
| | | • • | •• | | | | |
| | 7 | | -:- | - | -: | | |
| 71 | -51 | 17 | | | F1 | | |
| 1.15 | | | | | | | |
| - 1 | Ţ. | | | | | | |
| | - 6 | | | - | | | |
| | - | 17 | 5.1 | | | 1 | |
| | _ | 1- | _ | - | - | | |
| L. | - | | | - | | | |

SQPQS4

| | | • • | | | |
|------|----|-----|-----------------|--|--|
| | | | | | |
| 100. | - | - | | | |
| | - | - | 7 | | |
| | _ | + | — — ···· | | |
| | - | 444 | — | | |
| | - | | | | |
| - | _ | _ | - | | |
| | - | | •• | | |
| 7 | - | - | | | |
| - | - | - | | | |
| | - | - | | | |
| - | - | | | | |
| | - | | - | | |
| 100 | ٦. | - | _ | | |

$\mathcal{M} \not = \operatorname{coph} \mathcal{H}$

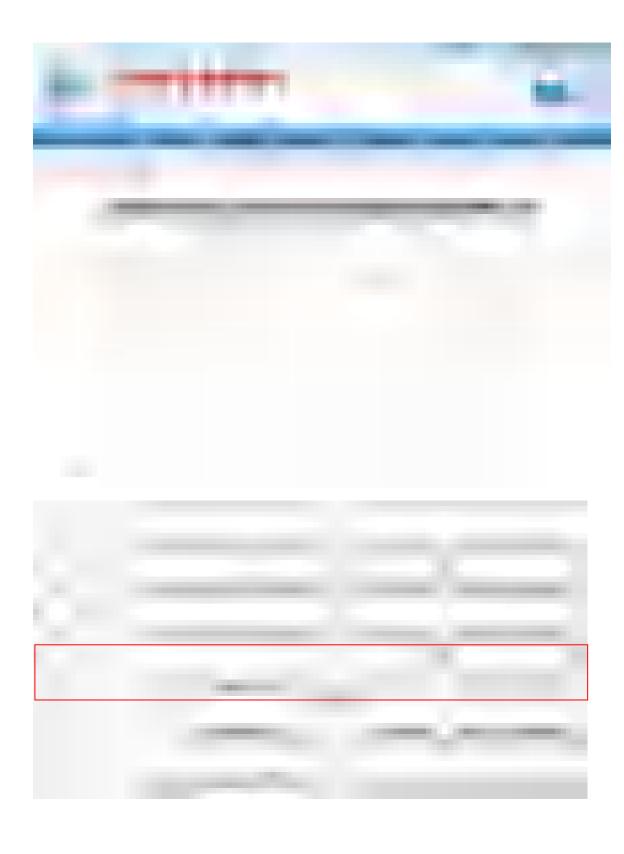
| been a | | | | | _ | |
|--------|-----|------|---|-------|---------|--------|
| | | | | | | -, |
| | | _ | | | | |
| MH- | | | _ | | | V |
| | | - 11 | - | ш | 4 1. | L . |
| | | - | | F 115 | HT 11** | ATT 11 |
| | | | | 78 | | |
| | | | | | | |
| | | | | | | |
| | | | _ | - | - 4 | |
| | | • | | - | | - |
| | | • | | | | - |
| | | | | | | |
| | | | | | | |
| | | _ | | | | - |
| | | | | | - | |
| | | | | | | - |
| | : | -5- | | | | |
| _ | | | | | | |
| | | 3 | | | | |
| | | | | | = | = = |
| | | | | - | | |
| | | | | - 11 | | - |
| | _ | | | ì | | - |
| | | | | i | _ | - |
| | | | | *1 | _ | - |
| *1 | • • | - | | | - | |
| F 7 | | | | - 4 | - | |
| | | | | - W | _ | |
| | 11 | | | - 4 | - | •• |
| . "1.8 | • • | | | - 4 | - | |
| | 1 | | 1 | - 4 | _ | |
| 64.0 | == | | | - | - | |
| 1 1 . | | - | | | - | |

al the sea o

| La. | | | | | |
|------|--|------|--------|-------|------|
| | | | -4- | | -11- |
| | | | ** 110 | H 100 | 17.1 |
| 444. | | 45.8 | - 11 | 20.00 | |
| | | | 1 . | > - | |
| | | | - | | |
| | | - | | | |
| . 44 | | + | _ | | |
| | | ÷ | | | - |
| | | ÷ . | | 7 | - |
| h., | | | - | T | |

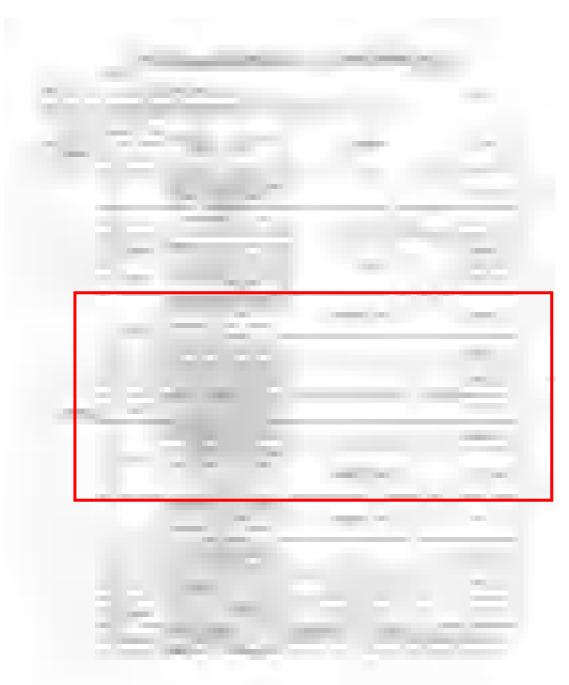
| h | | | | |
|-----------|------|------|-----|-----------|
| | | -461 | | e al II e |
| | | | | |
| ди. | | | _ | |
| | | | | |
| | | - | - | 11 |
| | | ш | 4++ | red . |
| · Marcola | | | | |
| 1 | | | | |
| _ | | | | |
| - | - | | | |
| | | | | |
| LET | | | _ | |
| | | | | |
| | | | | |
| | | | | |
| _ | | _ | | |
| | - L | | | - |
| - | 1.5 | _ | | |
| | | | | |
| | - | F | | - |
| | | r | | |
| 11121 | = 5: | | | |
| 1.185 | | | | |
| 170 | | | | |
| | | | | |
| | | | | r |

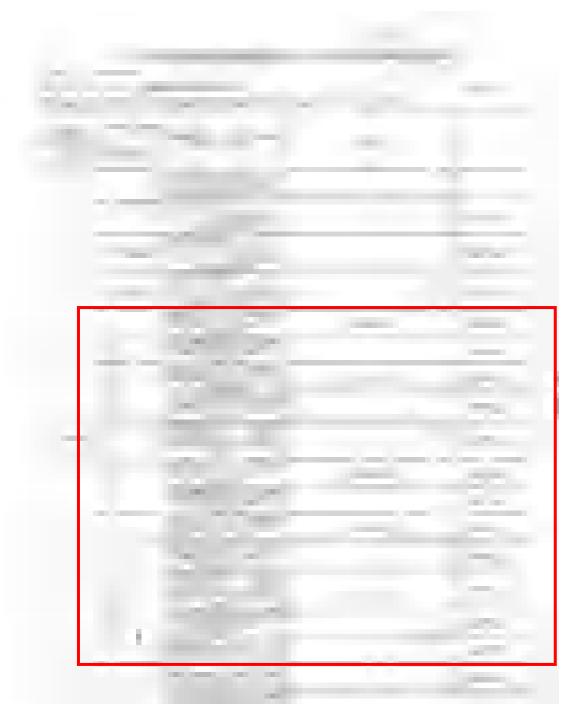
. . . .


| har a mark | |
|------------|--|
| - T- 11 | THE CHARGE DAME |
| -1 | 14 pm 10 x 10 x 10 m m m m m m |
| 10 | THE RELEASE PROPERTY AND ADDRESS OF THE PERSON OF THE PERS |
| | The state of the s |
| F | 11-8-11-8-1-48-18-4-14 |
| | FIRST TRACTOR OF STREET |
| | |
| P. | |
| | |
| | |
| MIN ALL | 111100000000000000000000000000000000000 |
| er. | |
| | |
| - LILIEL | THE RESERVE OF THE PROPERTY OF |

8 4 6 B

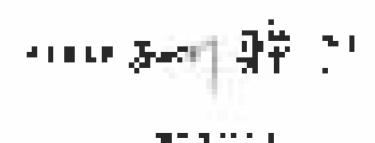
| h | ■ ■ ■ 号 | | |
|--------------|-------------|---|------|
| | | 4 | |
| 141- | 981 | | |
| #1#+ f=f f+ | and the | | W - |
| | 180 775 77 | | |
| | + | · | |
| 78441 | 11-1-44-144 | | |
| 140,1011016. | 1 000 | | B-47 |
| - | | | |
| 1614 | 60.0 | | -, |





非国外人国际书

EX



通信的问题说: 电图像用电子 函数中心的现在分词 医超级性中心的现在分词

The statement of the st

THE POLICE OF A CAMPETON OF THE PROPERTY OF TH

- a markina Pamede edeke 1
- 2. 大田 1 4 1 日 7 日 1 日 1 日 4 4 日 日 申
- 1 2 3 4 7 5 6 7

Diam'r. 4

| | 3.1 | |
|------------------|---|------|
|
14 5 世 2 七 年 | R. 10-11-11-11-11-11-11-11-11-11-11-11-11-1 | 大学 |
| | 200 | 7 51 |

者的整角有

テンドは、日本と中国とことで、アテル(出り取りた日間) 日本の中で

the Material

| h- | | eb es | |
|------|--|---------|----------|
| Ma | Agrovehiera I | 488 | adbille |
| 经溢 | 意用です | - bases | 1060 0 |
| 417 | 2004 APR 114 4 | 7.2 | Author |
| 100 | 年内 · · · · · · · · · · · · · · · · · · · | 1. | Larej . |
| 野科 | at 7.8,836 | | STATE OF |
| 461 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | 1010 |
| -150 | - 10 10 10 10 10 10 10 10 10 10 10 10 10 | | |
| | : + bill dit + ile saler * i | 74 | H-1- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

原常州灵塑化工有限公司地块 土壤污染状况调查报告技术评审专家组意见修改清单

1、结合历史生产工艺,细化特征污染物的识别;

修改内容:报告3.6章节已结合历史生产工艺,细化了特征污染物的识别。

2、完善布点采样深度设置及样品送检的依据;

修改内容:报告 4.1.1.3 章节已完善布点采样深度设置的依据;报告 4.1.1.5 章节已完善样品送检的依据。

3、完善相关附图、附件。

修改内容:已完善了人员访谈记录情况及其他相关的附件、附图。

2022年1月5日